Advances in Manufacturing ›› 2022, Vol. 10 ›› Issue (4): 495-519.doi: 10.1007/s40436-021-00384-9
• ARTICLES • Next Articles
Bao-Yu Zhang, Yu-Ning Zeng, Xue-Qin Pang, Song-Qing Li, Xiao Liu, Wen-Jun Deng
Received:2021-04-08
Revised:2021-10-20
Online:2022-12-25
Published:2022-11-05
Contact:
Wen-Jun Deng
E-mail:dengwj@scut.edu.cn
Supported by:Bao-Yu Zhang, Yu-Ning Zeng, Xue-Qin Pang, Song-Qing Li, Xiao Liu, Wen-Jun Deng. Feasibility analysis and process characteristics of selective laser ablation assisted milling Inconel 718[J]. Advances in Manufacturing, 2022, 10(4): 495-519.
| 1. Yin QA, Liu ZQ, Wang B et al (2020) Recent progress of machinability and surface integrity for mechanical machining Inconel 718: a review. Int J Adv Manuf Tech 109: 215–245 2. Liao ZR, Polyakov M, Diaz OG et al (2019) Grain refinement mechanism of nickel-based superalloy by severe plastic deformation-mechanical machining case. Acta Mater 180: 2–14 3. Lin YC, Li KK, Li HB et al (2015) New constitutive model for high-temperature deformation behavior of Inconel 718 superalloy. Mater Design 74: 108–118 4. Zhang HB, Zhang KF, Zhou HP et al (2015) Effect of strain rate on microstructure evolution of a nickel-based superalloy during hot deformation. Mater Design 80: 51–62 5. Ren XP, Liu ZQ (2016) Influence of cutting parameters on work hardening behavior of surface layer during turning superalloy Inconel 718. Int J Adv Manuf Tech 86: 1–9 6. Kuppuswamy R, Zunega J, Naidoo S (2017) Flank wear assessment on discrete machining process behavior for Inconel 718. Int J Adv Manuf Tech 93: 2097–2109 7. Zhu DH, Zhang XM, Ding H (2013) Tool wear characteristics in machining of nickel-based superalloys. Int J Mach Tool Manu 64: 60–77 8. Przestacki D, Chwalczuk T (2017) The analysis of surface topography during turning of Waspaloy with the application of response surface method. MATEC Web Conf 136: 02006. https://doi.org/10.1051/matecconf/201713602006 9. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tool Manu 51: 250–280 10. Mohsan AUH, Liu Z, Padhy GK (2017) A review on the progress towards improvement in surface integrity of Inconel 718 under high pressure and flood cooling conditions. Int J Adv Manuf Tech 97: 107–125 11. Feng YX, Hsu FC, Lu YT et al (2019) Residual stress prediction in ultrasonic vibration—assisted milling. Int J Adv Manuf Tech 104(5): 2579–2592 12. Xie HB, Yang ZQ, Qin N et al (2020) Strain rate analyses during elliptical vibration cutting of Inconel 718 using finite element analysis, Taguchi method, and ANOVA. Adv Manuf 8: 316–330 13. Przestacki D, Jankowiak M (2013) Surface roughness analysis after laser assisted machining of hard to cut materials. In: The 14th international conference on metrology and properties of engineering surfaces, 17–21 June, Taipei, China. https://doi.org/10.1088/1742-6596/483/1/012019 14. Feng YX, Hung TP, Lu YT et al (2019) Flank tool wear prediction of laser-assisted milling. J Manuf Process 43: 292–299 15. Venkatesan K, Ramanujam R, Kuppan P (2017) Investigation of machinability characteristics and chip morphology study in laser-assisted machining of Inconel 718. Int J Adv Manuf Tech 97: 3807–3821 16. Pan ZP, Feng YX, Lu YT et al (2017) Force modeling of Inconel 718 laser-assisted end milling under recrystallization effects. Int J Adv Manuf Tech 92(5/8): 2965–2974 17. Pan ZP, Lu YT, Lin YF et al (2017) Analytical model for force prediction in laser-assisted milling of IN718. Int J Adv Manuf Tech 90(9/12): 1–8 18. Dumitrescu P, Koshy P, Stenekes J et al (2006) High-power diode laser assisted hard turning of AISI D2 tool steel. Int J Mach Tool Manu 46(15): 2009–2016 19. Feng YX, Huang TP, Lu YT et al (2019) Residual stress prediction in laser-assisted milling considering recrystallization effects. Int J Adv Manuf Tech 102: 393–402 20. Feng YX, Huang TP, Lu YT et al (2019) Surface roughness modeling in laser-assisted end milling of Inconel 718. Mach Sci Technol 23(4): 650–668 21. Kawalec M, Przestacki D, Bartkowiak K et al (2008) Laser assisted machining of aluminium composite reinforced by SiC particle. In: The 27th international congress on laser materials processing, laser microprocessing and nanomanufacturing, 20–23 October, Temecula, USA. https://doi.org/10.2351/1.5061278 22. Feng YX, Hung TP, Lu YF et al (2019) Analytical prediction of temperature in laser-assisted milling with laser preheating and machining effects. Int J Adv Manuf Tech 100: 3185–3195 23. Feng YX, Hung TP, Lu YT et al (2020) Inverse analysis of the residual stress in laser-assisted milling. Int J Adv Manuf Tech 106: 2643–2475 24. Attia H, Tavakoli S, Vargas R et al (2010) Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP Ann Manuf Tech 59(1): 83–88 25. Navas VG, Arriola I, Gonzalo O et al (2013) Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM). Int J Mach Tool Manu 74: 19–28 26. Wei C, Guo W, Pratomo ES et al (2020) High speed, high power density laser-assisted machining of Al-SiC metal matrix composite with significant increase in productivity and surface quality. J Mater Process Tech 285: 116784. https://doi.org/10.1016/j.jmatprotec.2020.116784 27. Kim TW, Lee CM (2015) A study on the development of milling process for silicon nitride using ball end-mill tools by laser-assisted machining. Int J Adv Manuf Tech 77(5/8): 1205–1211 28. Hwang SJ, Oh WJ, Lee CM (2016) A study of preheating characteristics according to various preheating methods for laser-assisted machining. Int J Adv Manuf Tech 86(9/12): 1–10 29. Shang ZD, Liao ZR, Sarasua JA et al (2019) On modelling of laser assisted machining: forward and inverse problems for heat placement control. Int J Mach Tool Manu 138: 36–50 30. Xu DD, Liao ZR, Axinte D et al (2020) Investigation of surface integrity in laser-assisted machining of nickel based superalloy. Mater Design 194: 108851. https://doi.org/10.1016/j.matdes.2020.108851 31. Kukliński M, Bartkowska A, Przestacki D (2019) Laser alloying monel 400 with amorphous boron to obtain hard coatings. Materials 12(21): 3494. https://doi.org/10.3390/ma12213494 32. Kukliński M, Bartkowska A, Przestacki D (2018) Investigation of laser heat treated Monel 400. MATEC Web Conf 219: 02005. https://doi.org/10.1051/matecconf/201821902005 33. Liu C, Wan M, Zhang WH et al (2021) Chip formation mechanism of Inconel 718: a review of models and approaches. Chin J Mech Eng 34: 34. https://doi.org/10.1186/s10033-021-00552-9 34. Ahmed N, Darwish S, Abdulrehman AM (2016) Laser ablation and laser-hybrid ablation processes: a review. Mater Manuf Process 31(9/12): 1121–1142 35. Cejnar M, Kobler H, Hunyor SN (1993) Quantitative photoplethysmography: Lambert-Beer law or inverse function incorporating light scatter. Int J Nuner Meth Bio 15(2): 151–154 36. Pham DT, Dimov SS, Petkov PV (2007) Laser milling of ceramic components. Int J Mach Tool Manu 47(3/4): 618–626 37. Ahmed YS, Paiva JM, Arif AFM et al (2020) The effect of laser micro-scale textured tools on the tool-chip interface performance and surface integrity during austenitic stainless-steel turning. Appl Surf Sci 510: 145455. https://doi.org/10.1016/j.apsusc.2020.145455 38. Bushlya V, Zhou JM, Lenrick F et al (2011) Characterization of white layer generated when turning aged Inconel 718. Procedia Eng 19: 60–66 39. Elbestawi MA, Srivastava AK, El-Wardany TI (1996) A model for chip formation during machining of hardened steel. CIRP Ann Manuf Tech 45(1): 71–76 40. Liang XL, Liu ZQ, Yao GH et al (2019) Investigation of surface topography and its deterioration resulting from tool wear evolution when dry turning of titanium alloy Ti-6Al-4V. Tribol Int 135: 130–142 41. Oliaei S, Karpat Y (2016) Investigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloy Ti6Al4V. J Mater Process Tech 235: 28–40 |
| [1] | Zhen-Jing Duan, Shuai-Shuai Wang, Shu-Yan Shi, Ji-Yu Liu, Yu-Heng Li, Zi-Heng Wang, Chang-He Li, Yu-Yang Zhou, Jin-Long Song, Xin Liu. Surface quality evaluation of cold plasma and NMQL multi-field coupling eco-friendly micro-milling 7075-T6 aluminum alloy [J]. Advances in Manufacturing, 2025, 13(1): 69-87. |
| [2] | Jin Zhang, Li Ling, Qian-Yue Wang, Xue-Feng Huang, Xin-Zhen Kang, Gui-Bao Tao, Hua-Jun Cao. Surface quality investigation in high-speed dry milling of Ti-6Al-4V by using 2D ultrasonic-vibration-assisted milling platform [J]. Advances in Manufacturing, 2024, 12(2): 349-364. |
| [3] | Shailendra Chauhan, Rajeev Trehan, Ravi Pratap Singh. State of the art in finite element approaches for milling process: a review [J]. Advances in Manufacturing, 2023, 11(4): 708-751. |
| [4] | Zheng Zhou, Chang-Feng Yao, Liang Tan, Ya Zhang, Yi Fan. Experimental study on surface integrity refactoring changes of Ti-17 under milling-ultrasonic rolling composite process [J]. Advances in Manufacturing, 2023, 11(3): 492-508. |
| [5] | Lorcan O'Toole, Feng-Zhou Fang. Optimal tool design in micro-milling of difficult-to-machine materials [J]. Advances in Manufacturing, 2023, 11(2): 222-247. |
| [6] | Vitor F. C. Sousa, Francisco J. G. Silva, Ricardo Alexandre, José S. Fecheira, Gustavo Pinto, Andresa Baptista. Experimental study on the wear evolution of different PVD coated tools under milling operations of LDX2101 duplex stainless steel [J]. Advances in Manufacturing, 2023, 11(1): 158-179. |
| [7] | Miao-Xian Guo, Jin Liu, Li-Mei Pan, Chong-Jun Wu, Xiao-Hui Jiang, Wei-Cheng Guo. An integrated machine-process-controller model to predict milling surface topography considering vibration suppression [J]. Advances in Manufacturing, 2022, 10(3): 443-458. |
| [8] | Da-Xiang Deng, Jian Zheng, Xiao-Long Chen, Guang Pi, Yong-Heng Liu. Fabrication of micro pin fins on inclined V-shaped microchannel walls via laser micromilling [J]. Advances in Manufacturing, 2022, 10(2): 220-234. |
| [9] | Lorcan O'Toole, Cheng-Wei Kang, Feng-Zhou Fang. Precision micro-milling process: state of the art [J]. Advances in Manufacturing, 2021, 9(2): 173-205. |
| [10] | Dong-Dong Li, Wei-Min Zhang, Yuan-Shi Li, Feng Xue, Jürgen Fleischer. Chatter identifi cation of thin-walled parts for intelligent manufacturing based on multi-signal processing [J]. Advances in Manufacturing, 2021, 9(1): 22-33. |
| [11] | Ji-Peng Chen, Lin Gu, Wan-Sheng Zhao, Mario Guagliano. Modeling of flow and debris ejection in blasting erosion arc machining in end milling mode [J]. Advances in Manufacturing, 2020, 8(4): 508-518. |
| [12] | Wei Zhao, Asif Iqbal, Ding Fang, Ning He, Qi Yang. Experimental study on the meso-scale milling of tungsten carbide WC-17.5Co with PCD end mills [J]. Advances in Manufacturing, 2020, 8(2): 230-241. |
| [13] | Qi-Sen Chen, Li Dai, Yu Liu, Qiu-Xiang Shi. A cortical bone milling force model based on orthogonal cutting distribution method [J]. Advances in Manufacturing, 2020, 8(2): 204-215. |
| [14] | Xiao-Fen Liu, Wen-Hu Wang, Rui-Song Jiang, Yi-Feng Xiong, Kun-Yang Lin. Tool wear mechanisms in axial ultrasonic vibration assisted milling in-situ TiB2/7050Al metal matrix composites [J]. Advances in Manufacturing, 2020, 8(2): 252-264. |
| [15] | Xiao-Guang Guo, Ming Li, Zhi-Gang Dong, Rui-Feng Zhai, Zhu-Ji Jin, Ren-Ke Kang. Smooth particle hydrodynamics modeling of cutting force in milling process of TC4 [J]. Advances in Manufacturing, 2019, 7(4): 364-373. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn