[1] Wang Q, Kim MK (2019) Applications of 3D point cloud data in the construction industry: a fifteen-year review from 2004 to 2018. Adv Eng Inform 39:306-319 [2] Kardos C, Váncza J (2018) Application of generic CAD models for supporting feature based assembly process planning. Proc CIRP 67:446-451 [3] Bosché F (2010) Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction. Adv Eng Inform 24(1):107-118 [4] Bosché F, Guillemet A, Turkan Y et al (2014) Tracking the built status of MEP works: assessing the value of a scan-vs-BIM system. J Comput Civ Eng 28(4):05014004. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000343 [5] Anil EB, Tang P, Akinci B et al (2011) Assessment of the quality of as-is building information models generated from point clouds using deviation analysis. In: Beraldin JA, Cheok GS, McCarthy MB et al (eds) Three-dimensional imaging, interaction, and measurement, vol. 7864. International Society for Optics and Photonics, SPIE, p 78640F. https://doi.org/10.1117/12.876554 [6] Nahangi M, Haas CT (2014) Automated 3D compliance checking in pipe spool fabrication. Adv Eng Inform 28(4):360-369 [7] Bosché F, Haas C (2008) Automated retrieval of 3D CAD model objects in construction range images. Autom Constr 17(4):499-512 [8] Maalek R, Lichti DD, Walker R et al (2019) Extraction of pipes and flanges from point clouds for automated verification of pre-fabricated modules in oil and gas refinery projects. Autom Constr 103:150-167 [9] Kim Y, Nguyen CHP, Choi Y (2020) Automatic pipe and elbow recognition from three-dimensional point cloud model of industrial plant piping system using convolutional neural network-based primitive classification. Autom Constr 116:103236. https://doi.org/10.1016/j.autcon.2020.103236 [10] Sharif M, Nahangi M, Haas C et al (2017) Automated model-based finding of 3D objects in cluttered construction point cloud models. Comput Aided Civ Infrastruct Eng 32(11):893-908 [11] Papazov C, Burschka D (2011) An efficient RANSAC for 3D object recognition in noisy and occluded scenes. In: Kimmel R, Klette R, Sugimoto A (eds) Computer vision—ACCV 2010. Springer, Berlin Heidelberg, pp 135-148 [12] Kawashima K, Kanai S, Date H (2014) As-built modeling of piping system from terrestrial laser-scanned point clouds using normal-based region growing. J Comput Des Eng 1(1):13-26 [13] Czerniawski T, Nahangi M, Haas C et al (2016) Pipe spool recognition in cluttered point clouds using a curvature-based shape descriptor. Autom Constr 71:346-358 [14] Nguyen CHP, Choi Y (2018) Comparison of point cloud data and 3D CAD data for on-site dimensional inspection of industrial plant piping systems. Autom Constr 91:44-52 [15] Anil EB, Tang P, Akinci B et al (2013) Deviation analysis method for the assessment of the quality of the as-is building information models generated from point cloud data. Autom Constr 35:507-516 [16] Safa M, Shahi A, Nahangi M et al (2015) Automating measurement process to improve quality management for piping fabrication. Structures 3:71-80 [17] Cheng L, Wei Z, Sun M et al (2020) DeepPipes: learning 3D pipelines reconstruction from point clouds. Graph Models 111:101079. https://doi.org/10.1016/j.gmod.2020.101079 [18] Kim MK, Wang Q, Park JW et al (2016) Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM. Autom Constr 72:102-114 [19] Fraga-Lamas P, Noceda-Davila D, Fernández-Caramés T et al (2016) Smart pipe system for a Shipyard 4.0. Sensors 16(12):2186. https://doi.org/10.3390/s16122186 [20] Qi CR, Su H, Mo K et al (2016) PointNet: deep learning on point sets for 3D classification and segmentation. Comput Vis Pattern Recognit. https://doi.org/10.48550/arXiv.1612.00593 [21] Qi CR, Yi L, Su H et al (2017) PointNet++: deep hierarchical feature learning on point sets in a metric space. Comput Vis Pattern Recognit. https://doi.org/10.48550/arXiv.1706.02413 [22] Phan AV, Nguyen ML, Nguyen YLH et al (2018) DGCNN: a convolutional neural network over large-scale labeled graphs. Neural Netw 108:533-543 [23] Guo M, Cai J, Liu Z et al (2021) PCT: point cloud transformer. Comput Vis Media 7(2):187-199 [24] Wu Z, Song S, Khosla A et al (2014) 3D shapeNets: a deep representation for volumetric shapes. Comput Vis Pattern Recognit. https://doi.org/10.48550/arXiv.1406.5670 [25] Mo K, Zhu S, Chang AX et al (2019) Partnet: a large-scale benchmark for fine-grained and hierarchical part-level 3d object understanding. In: IEEE/CVF conference on computer vision and pattern recognition (CVPR), Long Beach, CA, USA, 15-20 June 2019 [26] Uy MA, Pham QH, Hua BS et al (2019) Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data. In: IEEE/CVF international conference on computer vision (ICCV), 27 October- 02 November, Seoul, Korea, pp 1588-1597. https://doi.org/10.1109/ICCV.2019.00167 [27] Yeo C, Kim S, Kim H et al (2020) Deep learning applications in an industrial process plant: repository of segmented point clouds for pipework components. JMST Adv 2(1):15-24. https://doi.org/10.1007/s42791-019-00027-y [28] Yin C, Cheng JC, Wang B et al (2022) Automated classification of piping components from 3D LiDAR point clouds using SE-PseudoGrid. Autom Constr 139:104300. https://doi.org/10.1016/j.autcon.2022.104300 [29] Yin C, Wang B, Gan VJL et al (2021) Automated semantic segmentation of industrial point clouds using ResPointNet++. Autom Constr 130:103874. https://doi.org/10.1016/j.autcon.2021.103874 [30] Agapaki E, Brilakis I (2020) CLOI-NET: class segmentation of industrial facilities’ point cloud datasets. Adv Eng Inform 45:101121. https://doi.org/10.1016/j.aei.2020.101121 [31] Korus K, Czerniawski T, Salamak M (2023) Visual programming simulator for producing realistic labeled point clouds from digital infrastructure models. Autom Constr 156:105126. https://doi.org/10.1016/j.autcon.2023.105126 [32] Li X, Li Z, Wu G (2017) Modular and offsite construction of piping: current barriers and route. Appl Sci 7(6):547. https://doi.org/10.3390/app7060547 [33] Pečur T, Yu N, Sherlock A et al (2023) Robust coordinate system alignment using high density point clouds from laser line probe. In: Proceedings of laser metrology and machine performance XV, Edinburgh, United Kingdom, pp 103-113 [34] Schnabel R, Wahl R, Klein R (2007) Efficient RANSAC for point-cloud shape detection. Comput Graph Forum 26(2):214-226 [35] Ester M, Kriegel HP, Sander J et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: ACM SIGKDD conference on knowledge discovery and data mining, Portland, 2-4 Aug, pp 226-231 [36] EN 545 (2010) Ductile iron pipes, fittings, accessories and their joints for water pipelines—requirements and test methods [37] EN 593 (2017) Industrial valves—metallic butterfly valves for general purposes [38] EN 1092-2 (1997) Flanges and their joints—circular flanges for pipes, valves, fittings and accessories, PN designated Part 2. Cast iron flanges [39] Winiwarter L, Esmorís Pena AM, Weiser H et al (2022) Virtual laser scanning with HELIOS++: a novel take on ray tracing-based simulation of topographic full-waveform 3D laser scanning. Remote Sens Environ 269:112772. https://doi.org/10.1016/j.rse.2021.112772 [40] Wang H, Liu Q, Yue X et al (2021) Unsupervised point cloud pre-training via occlusion completion. In: Proceedings of the IEEE/CVF international conference on computer vision (ICCV), Montreal, 10-17 Oct, pp 9782-9792 [41] Huang J, You S (2013) Detecting objects in scene point cloud: a combinational approach. In: International conference on 3D vision, IEEE, Seattle, WA, USA, pp 175-182. https://doi.org/10.1109/3DV.2013.31 [42] Sun J, Zhang Q, Kailkhura B et al (2022) Benchmarking robustness of 3d point cloud recognition against common corruptions. arXiv 2201.12296. https://doi.org/10.48550/arXiv.2201.12296 [43] Lee D, Lee J, Lee J et al (2021) Regularization strategy for point cloud via rigidly mixed sample. arXiv 2102.01929. https://doi.org/10.48550/arXiv.2102.01929 [44] Zhou QY, Park J, Koltun V (2016) Fast global registration. In: Leibe B, Matas J, Sebe N et al (eds.) Computer vision—ECCV 2016. Lecture Notes in Computer Science, vol 9906. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-46475-6_47 [45] Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (FPFH) for 3D registration. In: IEEE international conference on robotics and automation, Kobe, 12-17 May, pp 3212-3217. https://doi.org/10.1109/ROBOT.2009.5152473 [46] Park JH, Storch RL (2002) Pipe-routing algorithm development: case study of a ship engine room design. Expert Syst Appl 23(3):299-309 [47] Dong Z, Bian X (2020) Ship pipe route design using improved a* algorithm and genetic algorithm. IEEE Access 8:153273-153296 [48] Kim SH, Ruy WS, Jang BS (2013) The development of a practical pipe auto-routing system in a shipbuilding cad environment using network optimization. Int J Naval Archit Ocean Eng 5(3):468-477 [49] Kim Y, Lee K, Nam B et al (2023) Application of reinforcement learning based on curriculum learning for the pipe auto-routing of ships. J Comput Des Eng 10(1):318-328 |