[1] Wang Y, Tsutsumi S, Kawakubo T et al (2022) Microstructure, mechanical properties and fatigue behaviors of linear friction welded weathering steels. Int J Fatigue 159:106829. https://doi.org/10.1016/j.ijfatigue.2022.106829 [2] Cao R, Han C, Guo X et al (2022) Effects of boron on the microstructure and impact toughness of weathering steel weld metals and existing form of boron. Mater Sci Eng A 833:142560. https://doi.org/10.1016/j.msea.2021.142560 [3] Peng T, Fu C, Qin Z et al (2022) Microstructural characterization and mechanical properties of a Q550W weathering steel welded joint under different heat inputs. J Mater Sci 57(34):16528-16540 [4] Morcillo M, Chico B, Díaz I et al (2013) Atmospheric corrosion data of weathering steels. A review. Corros Sci 77:6-24 [5] Akka? N (2017) Welding time effect on tensile-shear loading in resistance spot welding of SPA-H weathering steel sheets used in railway vehicles. Acta Phys Pol A 131(1):52-54 [6] John B, Paulraj S, Mathew J (2016) The role of shielding gas on mechanical, metallurgical and corrosion properties of corten steel welded joints of railway coaches using GMAW. Adv Sci Technol Res J 10(32):156-168 [7] Zhao D, Bezgans Y, Vdonin N et al (2022) Mechanical performance and microstructural characteristic of gas metal arc welded A606 weathering steel joints. Int J Adv Manuf Technol 119(3/4):1921-1932 [8] Li S (2018) Research on microstructure and properties of welded joints of high strength weathering steel for heavy haul train. Dissertation, Anhui University of Technology [9] Zhang X, Mi G, Li S et al (2018) Study of microstructural inhomogeneity and its effects on mechanical properties of multi-layer laser welded joint. Int J Adv Manuf Technol 94(5/8):2163-2174 [10] Zhen S, Duan Z, Sun D et al (2014) Study on microstructures and mechanical properties of laser-arc hybrid welded S355J2W+N steel. Opt Laser Technol 59:11-18 [11] Gu X, Duan Z, Gu X et al (2015) Microstructure and mechanical properties of laser-MAG hybrid welded thick-section weathered steel joint. Int J Adv Manuf Technol 81(5/8):825-831 [12] Hao K, Gao Z, Huang J et al (2023) Comparisons of laser and laser-arc hybrid welded carbon steel with beam oscillation. Opt Laser Technol 157:108787. https://doi.org/10.1016/j.optlastec.2022.108787 [13] Meng Y, Fu J, Zhang S et al (2023) Laser-arc hybrid welding of AZ31B magnesium alloy by newly-designed beam oscillating pattern. J Manuf Process 93:208-218 [14] Shi L, Jiang L, Gao M (2022) Numerical research on melt pool dynamics of oscillating laser-arc hybrid welding. Int J Heat Mass Transfer 185:122421. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122421 [15] Lonsdale D, Flewitt P (1978) The role of grain size on the ductile-brittle transition of a 2.25 Pct Cr-1 Pct Mo steel. Metall Trans A 9:1619-1623 [16] Wang J, Shen Y, Xue W et al (2021) The significant impact of introducing nanosize precipitates and decreased effective grain size on retention of high toughness of simulated heat affected zone (HAZ). Mater Sci Eng A 803:140484. https://doi.org/10.1016/j.msea.2020.140484 [17] Wang B, Liu X, Wang G (2018) Inclusion characteristics and acicular ferrite nucleation in Ti-containing weld metals of X80 pipeline steel. Metall Mater Trans A 49:2124-2138 [18] Kang Y, Jeong S, Kang J et al (2016) Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength steel welds. Metall Mater Trans A 47:2842-2854 [19] Chen C, Zhou H, Wang C et al (2021) Laser welding of ultra-high strength steel with different oscillating modes. J Manuf Processes 68:761-769 [20] Lv S, Wu H, Wang K et al (2023) The microstructure evolution and influence factors of acicular ferrite in low alloy steels. Comput Mater Sci 218:111989. https://doi.org/10.1016/j.commatsci.2022.111989 |