[1] Battat S, Weitz DA, Whitesides GM (2022) An outlook on microfluidics: the promise and the challenge. Lab Chip 22(3):530-536 [2] Wu J, Dong M, Rigatto C et al (2018) Lab-on-chip technology for chronic disease diagnosis. NPJ Digit Med 1:7. https://doi.org/10.1038/s41746-017-0014-0 [3] Berlanda SF, Breitfeld M, Dietsche CL et al (2021) Recent advances in microfluidic technology for bioanalysis and diagnostics. Anal Chem 93(1):311-331 [4] Yew M, Ren Y, Koh KS et al (2019) A review of state-of-the-art microfluidic technologies for environmental applications: detection and remediation. Glob Chall 3(1):1800060. https://doi.org/10.1002/gch2.201800060 [5] Liu Y, Xu G, Sun J et al (2015) Investigation of the roughness effect on flow behavior and heat transfer characteristics in microchannels. Int J Heat Mass Transf 83:11-20 [6] Timung S, Chaudhuri J, Borthakur MP et al (2017) Electric field mediated spraying of miniaturized droplets inside microchannel. Electrophoresis 38(11):1450-1457 [7] He F, Liao Y, Lin J et al (2014) Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass. Sensors (Basel) 14(10):19402-19440 [8] Peng Y, Jiang S, Xia L et al (2020) Direct ink writing combined with metal-assisted chemical etching of microchannels for the microfluidic system applications. Sens Act A 315:112320. https://doi.org/10.1016/j.sna.2020.112320 [9] Xie J, Xie HF, Liu XR et al (2012) Dry micro-grooving on Si wafer using a coarse diamond grinding. Int J Mach Tools Manuf 61:1-8 [10] Li Y, Qu S (2013) Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips. Curr Appl Phys 13(7):1292-1295 [11] Nakanishi H, Nishimoto T, Nakamura N et al (1997) Fabrication of electrophoresis devices on quartz and glass substrates using a bonding with HF solution. In: IEEE the 10th annual international workshop on micro electro mechanical systems, an investigation of micro structures, sensors, actuators, machines and robots, 26?30 January, Nagoya, Japan, pp 299-304, https://doi.org/10.1109/MEMSYS.1997.581834 [12] Shafique MF, Laister A, Clark M et al (2011) Fabrication of embedded microfluidic channels in low temperature co-fired ceramic technology using laser machining and progressive lamination. J Eur Ceram Soc 31(13):2199-2204 [13] Kumar J (2013) Ultrasonic machining—a comprehensive review. Mach Sci Technol 17(3):325-379 [14] Ding K, Fu Y, Su H et al (2014) Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining. J Mater Process Technol 214(12):2900-2907 [15] Zhang C, Yuan S, Amin M et al (2015) Development of a cutting force prediction model based on brittle fracture for C/SiC in rotary ultrasonic facing milling. Int J Adv Manuf Technol 85(1/4):573-583 [16] Zhang JH, Zhao Y, Tian FQ et al (2015) Kinematics and experimental study on ultrasonic vibration-assisted micro end grinding of silica glass. Int J Adv Manuf Technol 78(9/12):1893-1904 [17] Lv D (2016) Influences of high-frequency vibration on tool wear in rotary ultrasonic machining of glass BK7. Int J Adv Manuf Technol 84(5):1443-1455 [18] Lakhdari F, Bouzid D, Belkhir N et al (2016) Surface and subsurface damage in Zerodur? glass ceramic during ultrasonic assisted grinding. Int J Adv Manuf Technol 90(5/8):1993-2000 [19] Wang J, Zhang C, Feng P et al (2015) A model for prediction of subsurface damage in rotary ultrasonic face milling of optical K9 glass. Int J Adv Manuf Technol 83(1/4):347-355 [20] Zhang C, Feng P, Zhang J et al (2012) Investigation into the rotary ultrasonic face milling of K9 glass with mechanism study of material removal. Int J Manuf Technol Manage 25(4):248-266 [21] Tian C, Chen X, Li D et al (2017) Analysis of surface formation of rotary ultrasonic milling of quartz glass based on nano-indentation experiment. Proc Eng 174:470-476 [22] Li C, Zhang F, Meng B et al (2017) Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics. Ceram Int 43(3):2981-2993 [23] Sun G, Shi F, Ma Z (2020) Effects of axial ultrasonic vibration on grinding quality in peripheral grinding and end grinding of ULE. Int J Adv Manuf Technol 109(7/8):2285-2298 [24] Chen Y, Su H, Qian N et al (2021) Ultrasonic vibration-assisted grinding of silicon carbide ceramics based on actual amplitude measurement: grinding force and surface quality. Ceram Int 47(11):15433-15441 [25] Zhou W, Tang J, Chen H et al (2019) A comprehensive investigation of surface generation and material removal characteristics in ultrasonic vibration assisted grinding. Int J Mech Sci 156:14-30 [26] Chen JB, Fang QH, Wang CC et al (2016) Theoretical study on brittle-ductile transition behavior in elliptical ultrasonic assisted grinding of hard brittle materials. Precis Eng 46:104-117 [27] Nguyen TT, Asakura Y, Koda S et al (2017) Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency. Ultrason Sonochem 39:301-306 [28] Xie J, Zhuo YW, Tan TW (2011) Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel. Precis Eng 35(1):173-182 [29] Jiang B, Zhu L, Min L et al (2019) Characterization of microchannel replicability of injection molded electrophoresis microfluidic chips. Polymers (Basel) 11(4):608. https://doi.org/10.3390/polym11040608 [30] Huang C, Zhou M, Zhang H (2022) Investigations on the micro-interactions of grit-workpiece and forces prediction in ultrasonic vibration side grinding of optical glass. J Mater Process Technol 300:117415. https://doi.org/10.1016/j.jmatprotec.2021.117415 [31] Liu Y, Liu Z, Wang X et al (2020) Experimental study on tool wear in ultrasonic vibration-assisted milling of C/SiC composites. Int J Adv Manuf Technol 107(1/2):425-436 |