Advances in Manufacturing ›› 2020, Vol. 8 ›› Issue (2): 144-159.doi: 10.1007/s40436-020-00297-z
• ARTICLES • Previous Articles Next Articles
Jin-Shi Wang1, Xiao-Dong Zhang1, Feng-Zhou Fang1,2
Received:
2019-08-31
Revised:
2020-01-03
Online:
2020-06-25
Published:
2020-06-08
Contact:
Feng-Zhou Fang
E-mail:fzfang@tju.edu.cn
Supported by:
Jin-Shi Wang, Xiao-Dong Zhang, Feng-Zhou Fang. Numerical study via total Lagrangian smoothed particle hydrodynamics on chip formation in micro cutting[J]. Advances in Manufacturing, 2020, 8(2): 144-159.
1. Fang FZ, Xu FF (2018) Recent advances in micro/nano-cutting:effect of tool edge and material properties. Nanomanuf Metrol 1:4-31 2. Ng EG, El-Wardany TI, Dumitrescu M et al (2002) Physics-based simulation of high speed machining. Mach Sci Technol 6:301-329 3. Niu W, Mo R, Liu GR et al (2018) Modeling of orthogonal cutting process of A2024-T351 with an improved SPH method. Int J Adv Manuf Technol 95:905-919 4. Nasr MNA, Ng EG, Elbestawi MA (2007) Modelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L. Int J Mach Tool Manuf 47:401-411 5. Movahhedy MR, Altintas Y, Gadala MS (2002) Numerical analysis of metal cutting with chamfered and blunt tools. J Manuf Sci Eng 124:178-188 6. Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55:1-34 7. Liu M, Zhang Z (2019) Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Sci China Phys Mech 62:984701 8. Ikawa N, Shimada S, Tanaka H (1992) Minimum thickness of cut in micromachining. Nanotechnology 3:6 9. Xiao G, To S, Zhang G (2015) Molecular dynamics modelling of brittle-ductile cutting mode transition:case study on silicon carbide. Int J Mach Tool Manuf 88:214-222 10. Pei QX, Lu C, Lee HP et al (2009) Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations. Nanoscale Res Lett 4:444-451 11. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013-1024 12. Liu G, Liu M (2003) Smoothed particle hydrodynamics:a meshfree particle method. World Scientific, Singapore 13. Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116:123-134 14. Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Meth Eng 47:1189-1214 15. Niu W, Mo R, Chang Z et al (2019) Investigating the effect of cutting parameters of Ti-6Al-4 V on surface roughness based on a SPH cutting model. Appl Sci 9:654 16. Liu MB, Zhang ZL, Feng DL (2017) A density-adaptive SPH method with kernel gradient correction for modeling explosive welding. Comput Mech 60:513-529 17. Vignjevic R, Reveles JR, Campbell J (2006) SPH in a total Lagrangian formalism. Comput Model Eng 4:181-198 18. Ganzenmüller GC (2015) An hourglass control algorithm for Lagrangian smooth particle hydrodynamics. Comput Meth Appl Mech Eng 286:87-106 19. Limido J, Espinosa C, Salaun M et al (2011) Metal cutting modelling SPH approach. Int J Mach Mach Mater 9:177-196 20. Olleak AA, Nasr MNA, El-Hofy HA (2015) The Influence of Johnson-Cook parameters on SPH modeling of orthogonal cutting of AISI 316L. In:10th European LS-DYNA conference, Würzburg 21. Avachat CS, Cherukuri HP (2015) A parametric study of the modeling of orthogonal machining using the smoothed particle hydrodynamics method. In:ASME 2015 international mechanical engineering congress and exposition. American Society of Mechanical Engineers 22. Liu Y, Li B, Wu C et al (2018) Smoothed particle hydrodynamics simulation and experimental analysis of SiC ceramic grinding mechanism. Ceram Int 44:12194-12203 23. Demiral M (2014) SPH modeling of vibro-assisted turning of Ti alloy:influence of vibration parameters. J Vibroeng. 16:2685-2694 24. Xi Y, Bermingham M, Wang G et al (2014) SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy. Comput Mater Sci 84:188-197 25. Rausch MK, Karniadakis GE, Humphrey JD (2017) Modeling soft tissue damage and failure using a combined particle/continuum approach. Biomech Model Mech 16:249-261 26. Islam MRI, Peng C (2019) A Total Lagrangian SPH method for modelling damage and failure in solids. Int J Mech Sci 157:498-511 27. Leroch S, Varga M, Eder SJ et al (2016) Smooth particle hydrodynamics simulation of damage induced by a spherical indenter scratching a viscoplastic material. Int J Solids Struct 81:188-202 28. Varga M, Leroch S, Rojacz H et al (2017) Study of wear mechanisms at high temperature scratch testing. Wear 388:112-118 29. Varga M, Leroch S, Eder SJ et al (2017) Meshless microscale simulation of wear mechanisms in scratch testing. Wear 376:1122-1129 30. Varga M, Leroch S, Eder SJ et al (2019) Influence of velocity on high-temperature fundamental abrasive contact:a numerical and experimental approach. Wear 426:370-371 31. Mishra T, Ganzenmüller GC, de Rooij M et al (2019) Modelling of ploughing in a single-asperity sliding contact using material point method. Wear 418:180-190 32. Bonet J, Kulasegaram S, Rodriguez-Paz MX et al (2004) Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. Comput Meth Appl Mech Eng 193:1245-1256 33. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1-19 34. Desbrun M, Gascuel MP (1996) Smoothed particles:a new paradigm for animating highly deformable bodies. In:Ronan B, Gerard H (eds) Computer animation and simulation'96. Springer, Vienna, pp 61-76 35. Prawoto Y, Fanone M, Shahedi S et al (2012) Computational approach using Johnson-Cook model on dual phase steel. Comput Mater Sci 54:48-55 |
[1] | Qi-Sen Chen, Li Dai, Yu Liu, Qiu-Xiang Shi. A cortical bone milling force model based on orthogonal cutting distribution method [J]. Advances in Manufacturing, 2020, 8(2): 204-215. |
[2] | Wei Zhao, Asif Iqbal, Ding Fang, Ning He, Qi Yang. Experimental study on the meso-scale milling of tungsten carbide WC-17.5Co with PCD end mills [J]. Advances in Manufacturing, 2020, 8(2): 230-241. |
[3] | Xiao-Fen Liu, Wen-Hu Wang, Rui-Song Jiang, Yi-Feng Xiong, Kun-Yang Lin. Tool wear mechanisms in axial ultrasonic vibration assisted milling in-situ TiB2/7050Al metal matrix composites [J]. Advances in Manufacturing, 2020, 8(2): 252-264. |
[4] | Ping Zhou, Zi-Guang Wang, Ying Yan, Ning Huang, Ren-Ke Kang, Dong-Ming Guo. Sensitivity analysis of the surface integrity of monocrystalline silicon to grinding speed with same grain depth-of-cut [J]. Advances in Manufacturing, 2020, 8(1): 97-106. |
[5] | Xiao-Guang Guo, Ming Li, Zhi-Gang Dong, Rui-Feng Zhai, Zhu-Ji Jin, Ren-Ke Kang. Smooth particle hydrodynamics modeling of cutting force in milling process of TC4 [J]. Advances in Manufacturing, 2019, 7(4): 364-373. |
[6] | Jun-Yun Chen, Tian-Ye Jin, Xi-Chun Luo. Key machining characteristics in ultrasonic vibration cutting of single crystal silicon for micro grooves [J]. Advances in Manufacturing, 2019, 7(3): 303-314. |
[7] | Yun-Song Lian, Chen-Liang Mu, Ming Liu, Hui-Feng Chen, Bin Yao. Three-dimensional numerical simulation of soft/hard composite-coated textured tools in dry turning of AISI 1045 steel [J]. Advances in Manufacturing, 2019, 7(2): 133-141. |
[8] | Tian-Feng Zhou, Ben-Shuai Ruan, Jia Zhou, Xiao-Bin Dong, Zhi-Qiang Liang, Xi-Bin Wang. Mechanism of brittle fracture in diamond turning of microlens array on polymethyl methacrylate [J]. Advances in Manufacturing, 2019, 7(2): 228-237. |
[9] | Christian Brecher, Prateek Chavan, Alexander Epple. Efficient determination of stability lobe diagrams by in-process varying of spindle speed and cutting depth [J]. Advances in Manufacturing, 2018, 6(3): 272-279. |
[10] | Gergely Gyebrószki, Daniel Bachrathy, Gábor Csernák, Gabor Stepan. Stability of turning processes for periodic chip formation [J]. Advances in Manufacturing, 2018, 6(3): 345-353. |
[11] | Ramanuj Kumar, Ashok Kumar Sahoo, Purna Chandra Mishra, Rabin Kumar Das. Comparative investigation towards machinability improvement in hard turning using coated and uncoated carbide inserts: part I experimental investigation [J]. Advances in Manufacturing, 2018, 6(1): 52-70. |
[12] | Cesar Giovanni Cabrera, Anna Carla Araujo, Daniel Alves Castello. On the wavelet analysis of cutting forces for chatter identification in milling [J]. Advances in Manufacturing, 2017, 5(2): 130-142. |
[13] | Ravindra Nath Yadav. Development and experimental investigation of duplex turning process [J]. Advances in Manufacturing, 2017, 5(2): 149-157. |
[14] | Dan-Dan Cui, Liang-Chi Zhang. Nano-machining of materials: understanding the process through molecular dynamics simulation [J]. Advances in Manufacturing, 2017, 5(1): 20-34. |
[15] | D. Biermann, H. Abrahams, M. Metzger. Experimental investigation of tool wear and chip formation in cryogenic machining of titanium alloys [J]. Advances in Manufacturing, 2015, 3(4): 292-299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn