Advances in Manufacturing ›› 2022, Vol. 10 ›› Issue (3): 411-427.doi: 10.1007/s40436-022-00398-x
• ARTICLES • Previous Articles
Long-Xu Yao1,2, Zhan-Qiang Liu1,2, Qing-Hua Song1,2, Bing Wang1,2, Yu-Kui Cai1,2
Received:
2021-10-07
Revised:
2021-12-03
Published:
2022-09-08
Supported by:
Long-Xu Yao, Zhan-Qiang Liu, Qing-Hua Song, Bing Wang, Yu-Kui Cai. Effects of process parameters on periodic impact force exerting on cutting tool in ultrasonic vibration-assisted oblique turning[J]. Advances in Manufacturing, 2022, 10(3): 411-427.
1. Shamoto E, Altintas Y (1999) Prediction of shear angle in oblique cutting with maximum shear stress and minimum energy principles. Trans ASME J Manuf Sci Eng 121:399-407 2. Moufki A, Dudzinski D, Molinari A et al (2000) Thermoviscoplastic modelling of oblique cutting:forces and chip flow predictions. Int J Mech Sci 42(6):1205-1232 3. Moufki A, Devillez A, Dudzinski D et al (2004) Thermomechanical modelling of oblique cutting and experimental validation. Int J Mach Tools Manuf 44(9):971-989 4. Nath C, Rahman M (2008) Effect of machining parameters in ultrasonic vibration cutting. Int J Mach Tools Manuf 48(9):965-974 5. Xu Y, Wan Z, Zou P et al (2021) Experimental study on cutting force in ultrasonic vibration-assisted turning of 304 austenitic stainless steel. Proc Inst Mech Eng Part B J Eng Manuf 235(3):494-513 6. Teimouri R, Amini S, Mohagheghian N (2017) Experimental study and empirical analysis on effect of ultrasonic vibration during rotary turning of aluminum 7075 aerospace alloy. J Manuf Process 26:1-12 7. Liu CS, Zhao B, Gao GF et al (2002) Research on the characteristics of the cutting force in the vibration cutting of a particlereinforced metal matrix composites SiCp/Al. J Mater Process Technol 129(1/3):196-199 8. Gholamzadeh B, Soleimanimehr H (2019) Finite element modeling of ultrasonic-assisted turning:cutting force and heat generation. Mach Sci Technol 23(6):869-885 9. Muhammad R, Ahmed N, Roy A et al (2012) Numerical modelling of vibration-assisted turning of Ti-15333. Procedia CIRP 1:347-352 10. Zhang X, Kumar AS, Rahman M et al (2012) An analytical force model for orthogonal elliptical vibration cutting technique. J Manuf Process 14(3):378-387 11. Bai W, Sun R, Gao Y et al (2016) Analysis and modeling of force in orthogonal elliptical vibration cutting. Int J Adv Manuf Technol 83(5/8):1025-1036 12. Zhang C, Ehmann K, Li Y (2015) Analysis of cutting forces in the ultrasonic elliptical vibration-assisted micro-groove turning process. Int J Adv Manuf Technol 78(1/4):139-152 13. Nategh M, Razavi H, Abdullah A (2012) Analytical modeling and experimental investigation of ultrasonic-vibration assisted oblique turning, part I:kinematics analysis. Int J Mech Sci 63(1):1-11 14. Razavi H, Nategh M, Abdullah A (2012) Analytical modeling and experimental investigation of ultrasonic-vibration assisted oblique turning, part II:dynamics analysis. Int J Mech Sci 63(1):12-25 15. Razavi H, Nategh M, Abdullah A (2012) Analytical modeling and experimental investigation of ultrasonic-vibration assisted oblique turning, part III:experimental investigation. Int J Mech Sci 63(1):26-36 16. Lin J, Han J, Zhou X et al (2016) Study on predictive model of cutting force and geometry parameters for oblique elliptical vibration cutting. Int J Mech Sci 117:43-52 17. Liu J, Jiang X, Han X et al (2019) Influence of parameter matching on performance of high-speed rotary ultrasonic elliptical vibration-assisted machining for side milling of titanium alloys. Int J Adv Manuf Technol 101(5):1333-1348 18. Arrazola PJ, Özel T, Umbrello D et al (2013) Recent advances in modelling of metal machining processes. CIRP Ann 62(2):695-718 19. Fatima A, Mativenga PT (2013) A review of tool-chip contact length models in machining and future direction for improvement. Proc Inst Mech Eng Part B J Eng Manuf 227(3):345-356 20. Toropov A, Ko SL (2003) Prediction of tool-chip contact length using a new slip-line solution for orthogonal cutting. Int J Mach Tools Manuf 43(12):1209-1215 21. Pham TH, Nguyen DT, Banh TL et al (2020) Experimental study on the chip morphology, tool-chip contact length, workpiece vibration, and surface roughness during high-speed face milling of A6061 aluminum alloy. Proc Inst Mech Eng Part B:J Eng Manuf 234(3):610-620 22. Iqbal S, Mativenga P, Sheikh M (2009) A comparative study of the tool-chip contact length in turning of two engineering alloys for a wide range of cutting speeds. Int J Adv Manuf Technol 42(1/2):30-40 23. Brown R, Armarego E (1964) Oblique machining with a single cutting edge. Int J Mach Tool Des Res 4(1):9-25 24. Liu Y, Liu Z, Wang X et al (2020) Experimental study on tool wear in ultrasonic vibration-assisted milling of C/SiC composites. Int J Adv Manuf Technol 107(1):425-436 |
[1] | Zhi-Fu Xue, Min Lai, Fei-Fei Xu, Feng-Zhou Fang. Molecular dynamics study on surface formation and phase transformation in nanometric cutting of β-Sn [J]. Advances in Manufacturing, 2022, 10(3): 356-367. |
[2] | Ming-Xian Xu, Liang-Shan Xiong, Bao-Yi Zhu, Ling-Feng Zheng, Kai Yin. Experimental research on the critical conditions and critical equation of chip splitting when turning a C45E4 disc workpiece symmetrically with a high-speed steel double-edged turning tool [J]. Advances in Manufacturing, 2022, 10(2): 159-174. |
[3] | Ekrem Oezkaya, Sebastian Michel, Dirk Biermann. Experimental and computational analysis of the coolant distribution considering the viscosity of the cutting fluid during machining with helical deep hole drills [J]. Advances in Manufacturing, 2022, 10(2): 235-249. |
[4] | Hao-Jie An, Jin-Shi Wang, Feng-Zhou Fang. Material removal at atomic and close-to-atomic scale by high-energy photon:a case study using atomistic-continuum method [J]. Advances in Manufacturing, 2022, 10(1): 59-71. |
[5] | Kai-Ning Shi, Ning Liu, Cong-Le Liu, Jun-Xue Ren, Shan-Shan Yang, Wei Chit Tan. Indirect approach for predicting cutting force coefficients and power consumption in milling process [J]. Advances in Manufacturing, 2022, 10(1): 101-113. |
[6] | Joseck Nyaboro, Mahmoud Ahmed, Hassan El-Hofy, Mohamed El-Hofy. Experimental and numerical investigation of the abrasive waterjet machining of aluminum-7075-T6 for aerospace applications [J]. Advances in Manufacturing, 2021, 9(2): 286-303. |
[7] | Jin-Shi Wang, Xiao-Dong Zhang, Feng-Zhou Fang. Numerical study via total Lagrangian smoothed particle hydrodynamics on chip formation in micro cutting [J]. Advances in Manufacturing, 2020, 8(2): 144-159. |
[8] | Qi-Sen Chen, Li Dai, Yu Liu, Qiu-Xiang Shi. A cortical bone milling force model based on orthogonal cutting distribution method [J]. Advances in Manufacturing, 2020, 8(2): 204-215. |
[9] | Wei Zhao, Asif Iqbal, Ding Fang, Ning He, Qi Yang. Experimental study on the meso-scale milling of tungsten carbide WC-17.5Co with PCD end mills [J]. Advances in Manufacturing, 2020, 8(2): 230-241. |
[10] | Xiao-Fen Liu, Wen-Hu Wang, Rui-Song Jiang, Yi-Feng Xiong, Kun-Yang Lin. Tool wear mechanisms in axial ultrasonic vibration assisted milling in-situ TiB2/7050Al metal matrix composites [J]. Advances in Manufacturing, 2020, 8(2): 252-264. |
[11] | Xiao-Guang Guo, Ming Li, Zhi-Gang Dong, Rui-Feng Zhai, Zhu-Ji Jin, Ren-Ke Kang. Smooth particle hydrodynamics modeling of cutting force in milling process of TC4 [J]. Advances in Manufacturing, 2019, 7(4): 364-373. |
[12] | Hong-Yan Zheng, Shu-Qiang Guo, Meng-Ran Qiao, Li-Bin Qin, Xiu-Jing Zou, Zhong-Ming Ren. Study on the modification of inclusions by Ca treatment in GCr18Mo bearing steel [J]. Advances in Manufacturing, 2019, 7(4): 438-447. |
[13] | Pin Li, Jun-Tong Xi. Modeling of laser adjustment for large diameter tubes using robotic kinematic theories [J]. Advances in Manufacturing, 2018, 6(4): 401-408. |
[14] | Lutfi Taner Tunc, Orkun Ozsahin. Use of inverse stability solutions for identification of uncertainties in the dynamics of machining processes [J]. Advances in Manufacturing, 2018, 6(3): 308-318. |
[15] | Kundan K. Singh, Ramesh Singh. Chatter stability prediction in high-speed micromilling of Ti6Al4V via finite element based microend mill dynamics [J]. Advances in Manufacturing, 2018, 6(1): 95-106. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 55
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1492
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn