Advances in Manufacturing ›› 2021, Vol. 9 ›› Issue (4): 580-591.doi: 10.1007/s40436-021-00362-1
• ARTICLES • Previous Articles
Roshan Lal Virdi1, Sukhpal Singh Chatha2, Hazoor Singh2
Received:
2020-12-26
Revised:
2021-02-28
Published:
2021-11-12
Contact:
Roshan Lal Virdi
E-mail:virdirl@gmail.com
Roshan Lal Virdi, Sukhpal Singh Chatha, Hazoor Singh. Performance evaluation of nanofluid-based minimum quantity lubrication grinding of Ni-Cr alloy under the influence of CuO nanoparticles[J]. Advances in Manufacturing, 2021, 9(4): 580-591.
1. Sadeghi MH, Hadad MJ, Tawakoli T et al (2010) An investigation on surface grinding of AISI 4140 hardened steel using minimum quantity lubrication-MQL technique. Int J Mater Form 3(4):241-251 2. Malkin S, Guo C (2007) Thermal analysis of grinding. CIRP Ann 56(2):760-782 3. Fang N, Wu Q (2009) A comparative study of the cutting forces in high speed machining of Ti-6Al-4V and Inconel 718 with a round cutting edge tool. J Mater Process Technol 209(9):4385-4389 4. Li CH, Hou YL, Xiu SC et al (2008) Application of lubrication theory to near-dry green grinding-feasibility analysis. Adv Mater Res 44/46:135-142 5. Silva LR, Bianchi EC, Catai RE et al (2005) Study on the behavior of the minimum quantity lubricant-MQL technique under different lubricating and cooling conditions when grinding ABNT 4340 steel. J Braz Soc Mech Sci Eng 27:192-199 6. Naveena B, Mariyam Thaslima SS, Savitha V et al (2017) Simplified MQL system for drilling AISI 304 SS using cryogenically treated drills. Mater Manuf Process 32(15):1679-1684 7. Ozcelik B, Kuram E, Huseyin Cetin M et al (2011) Experimental investigations of vegetable based cutting fluids with extreme pressure during turning of AISI 304L. Tribol Int 44(12):1864-1871 8. Sharma VS, Singh G, Sørby K (2015) A review on minimum quantity lubrication for machining processes. Mater Manuf Process 30(8):935-953 9. Ni C, Zhu L (2020) Investigation on machining characteristics of TC4 alloy by simultaneous application of ultrasonic vibration assisted milling (UVAM) and economical-environmental MQL technology. J Mater Process Technol 278:116518. https://doi.org/10.1016/j.jmatprotec.2019.116518 10. Lawal SA, Choudhury IA, Nukman Y (2014) Evaluation of vegetable and mineral oil-in-water emulsion cutting fluids in turning AISI 4340 steel with coated carbide tools. J Clean Prod 66:610-618 11. Das SK, Putra N, Thiesen P et al (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125(4):567-574 12. Kalita P, Malshe AP, Arun KS et al (2012) Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. J Manuf Process 14(2):160-166 13. Virdi RL, Singh Chatha S, Singh H (2020) Performance evaluation of Inconel 718 under vegetable oils based nanofluids using minimum quantity lubrication grinding. Mater Today Proc 33(3):1528-1545 14. Setti D, Sinha MK, Ghosh S et al (2015) Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids. Int J Mach Tools Manuf 88:237-248 15. Tawakoli T, Hadad MJ, Sadeghi MH (2010) Influence of oil mist parameters on minimum quantity lubrication-MQL grinding process. Int J Mach Tools Manuf 50(6):521-531 16. Mao C, Tang X, Zou H et al (2012) Investigation of grinding characteristic using nanofluid minimum quantity lubrication. Int J Precis Eng Manuf 13(10):1745-1752 17. Holmberg K, Siilasto R, Laitinen T et al (2013) Global energy consumption due to friction in paper machines. Tribol Int 62:58-77 18. Shashidhara YM, Jayaram SR (2010) Vegetable oils as a potential cutting fluid-an evolution. Tribol Int 43(5/6):1073-1081 19. Marques A, Paipa Suarez M, Falco SW et al (2019) Turning of Inconel 718 with whisker-reinforced ceramic tools applying vegetable-based cutting fluid mixed with solid lubricants by MQL. J Mater Process Technol 266:530-543 20. Krajnik P, Pusavec F, Rashid A (2011) Nanofluids:properties, applications and sustainability aspects in materials processing technologies. In:Advances in sustainable manufacturing. Springer, Berlin, pp 107-113 21. Su Y, Gong L, Chen D (2015) An investigation on tribological properties and lubrication mechanism of graphite nanoparticles as vegetable based oil additive. J Nanomater 2015:1-7 22. Wang X, Li C, Zhang Y et al (2020) Vegetable oil-based nanofluid minimum quantity lubrication turning:academic review and perspectives. J Manuf Process 59:76-97 23. Yang M, Li C, Zhang Y et al (2019) Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. Int J Adv Manuf Technol 102(5):2617-2632 24. Silva LR (2013) Environmentally friendly manufacturing:behavior analysis of minimum quantity of lubricant-MQL in grinding process. J Clean Prod 256:103287. https://doi.org/10.1016/j.jclepro.2013.01.033 25. Shokoohi Y, Khosrojerdi E, Rassolian SB (2015) Machining and ecological effects of a new developed cutting fluid in combination with different cooling techniques on turning operation. J Clean Prod 94:330-339 26. Hadad M, Hadi M (2013) An investigation on surface grinding of hardened stainless steel S34700 and aluminum alloy AA6061 using minimum quantity of lubrication (MQL) technique. Int J Adv Manuf Technol 68:2145-2158 27. Zhang Y, Li C, Jia D et al (2016) Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J Mater Process Technol 232:100-115 28. Gao T, Li C, Zhang Y et al (2019) Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Int 131:51-63 29. Guo S, Li C, Zhang Y et al (2017) Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J Clean Prod 140(Part 3):1060-1076 30. Thottackkad MV, Perikinalil RK, Kumarapillai PN (2012) Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles. Int J Precis Eng Manuf 13(1):111-116 31. Shabgard M, Seyedzavvar M, Mohammadpourfard M (2017) Experimental investigation into lubrication properties and mechanism of vegetable-based CuO nanofluid in MQL grinding. Int J Adv Manuf Technol 92(9):3807-3823 32. Wang Y, Li C, Zhang Y et al (2017) Experimental evaluation on tribological performance of the wheel/workpiece interface in minimum quantity lubrication grinding with different concentrations of Al2O3 nanofluids. J Clean Prod 142(Part 4):3571-3583 33. Choi SUS, Zhang ZG, Yu W et al (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79(14):2252. https://doi.org/10.1063/1.1408272 34. Seyedzavvar M, Abbasi H, Kiyasatfar M et al (2020) Investigation on tribological performance of CuO vegetable-oil based nanofluids for grinding operations. Adv Manuf 8(3):344-360 35. Wang Y, Li C, Zhang Y et al (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribol Int 99:198-210 36. Zhang Y, Li C, Yang M et al (2016) Experimental evaluation of cooling performance by friction coefficient and specific friction energy in nanofluid minimum quantity lubrication grinding with different types of vegetable oil. J Clean Prod 139:685-705 37. Banerjee N, Sharma A (2019) Improving machining performance of Ti-6Al-4V through multi-point minimum quantity lubrication method. Proc Inst Mech Eng Part B J Eng Manuf 233(1):321-336 38. Emami M, Sadeghi MH, Sarhan AAD et al (2014) Investigating the minimum quantity lubrication in grinding of Al2O3 engineering ceramic. J Clean Prod 66:632-643 39. Ogonowski S, Wołosiewicz-Głąb M, Ogonowski Z et al (2018) Comparison of wet and dry grinding in electromagnetic mill. Minerals 8(4):138-157 40. Tawakoli T, Hadad MJ, Sadeghi MH (2010) Investigation on minimum quantity lubricant-MQL grinding of 100Cr6 hardened steel using different abrasive and coolant-lubricant types. Int J Mach Tools Manuf 50(8):698-708 41. Wang Y, Li C, Zhang Y et al (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. J Clean Prod 127:487-499 42. Reddy NSK, Nouari M, Yang M (2010) Development of electrostatic solid lubrication system for improvement in machining process performance. Int J Mach Tools Manuf 50(9):789-797 43. Shen B, Shih AJ, Tung SC (2008) Application of nanofluids in minimum quantity lubrication grinding. Tribol Trans 51(6):730-737 44. Jia D, Li C, Zhang Y et al (2017) Specific energy and surface roughness of minimum quantity lubrication grinding Ni-based alloy with mixed vegetable oil-based nanofluids. Precis Eng 50:248-262 45. Tawakoli T, Hadad M, Sadeghi MH et al (2011) Minimum quantity lubrication in grinding:effects of abrasive and coolant-lubricant types. J Clean Prod 19(17/18):2088-2099 46. Wang Y, Li C, Zhang Y et al (2018) Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. Int J Precis Eng Manuf Green Technol 5(2):327-339 47. Zhang X, Li C, Zhang Y et al (2017) Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation. Precis Eng 47:532-545 48. Rapeti P, Pasam VK, Rao Gurram KM et al (2018) Performance evaluation of vegetable oil based nano cutting fluids in machining using grey relational analysis-a step towards sustainable manufacturing. J Clean Prod 172:2862-2875 49. Shaw MC, Pigott JD, Richardson LP (1951) Effect of cutting fluid upon chip-tool interface temperature. Trans. ASME 71:45-56 |
[1] | Xiang-Long Zhu, Yu Li, Zhi-Gang Dong, Ren-Ke Kang, Shang Gao. Study into grinding force in back grinding of wafer with outer rim [J]. Advances in Manufacturing, 2020, 8(3): 361-368. |
[2] | Ben-Kai Li, Qing Miao, Min Li, Xi Zhang, Wen-Feng Ding. An investigation on machined surface quality and tool wear during creep feed grinding of powder metallurgy nickel-based superalloy FGH96 with alumina abrasive wheels [J]. Advances in Manufacturing, 2020, 8(2): 160-176. |
[3] | Ping Zhou, Zi-Guang Wang, Ying Yan, Ning Huang, Ren-Ke Kang, Dong-Ming Guo. Sensitivity analysis of the surface integrity of monocrystalline silicon to grinding speed with same grain depth-of-cut [J]. Advances in Manufacturing, 2020, 8(1): 97-106. |
[4] | Xiao-Liang Shi, Shi-Chao Xiu, Hui-Ling Su. Residual stress model of pre-stressed dry grinding considering coupling of thermal, stress, and phase transformation [J]. Advances in Manufacturing, 2019, 7(4): 401-410. |
[5] | Shi-Jie Dai, Xiao-Qiang Li, Hui-Bo Zhang. Research on temperature field of non-uniform heat source model in surface grinding by cup wheel [J]. Advances in Manufacturing, 2019, 7(3): 326-342. |
[6] | Muhammad Tariq, Ying Li, Wen-Xian Li, Zhong-Rui Yu, Jia-Mei Li, Ye-Min Hu, Ming-Yuan Zhu, Hong-Ming Jin, Yang Liu, Yi-Bing Li, Katerina Skotnicova. Structural, ferromagnetic, and optical properties of Fe and Al co-doped ZnO diluted magnetic semiconductor nanoparticles synthesized under high magnetic field [J]. Advances in Manufacturing, 2019, 7(2): 248-255. |
[7] | V. G. Ladeesh, R. Manu. Effect of machining parameters on edge-chipping during drilling of glass using grinding-aided electrochemical discharge machining (G-ECDM) [J]. Advances in Manufacturing, 2018, 6(2): 215-224. |
[8] | Tian-Ci Chang, Xun Cao, Shan-Hu Bao, Shi-Dong Ji, Hong-Jie Luo, Ping Jin. Review on thermochromic vanadium dioxide based smart coatings: from lab to commercial application [J]. Advances in Manufacturing, 2018, 6(1): 1-19. |
[9] | Zi-Li Xu, Song Lu, Jun Yang, Yong-Hui Feng, Chun-Tai Shen. A wheel-type in-pipe robot for grinding weld beads [J]. Advances in Manufacturing, 2017, 5(2): 182-190. |
[10] | Bahman Azarhoushang, Ali Zahedi. Laser conditioning and structuring of grinding tools-a review [J]. Advances in Manufacturing, 2017, 5(1): 35-49. |
[11] | Mustafa Bakkal, Erdinç Serbest, İlker Karipçin, Ali T. Kuzu, Umut Karagüzel, Bora Derin. An experimental study on grinding of Zr-based bulk metallic glass [J]. Advances in Manufacturing, 2015, 3(4): 282-291. |
[12] | Prasant Sutradhar Narayan Debnath Mitali Saha. Microwave-assisted rapid synthesis of alumina nanoparticles using tea, coffee and triphala extracts [J]. Advances in Manufacturing, 2013, 1(4): 357-361. |
[13] | A. Rajaeiyan,M. M. Bagheri-Mohagheghi. Comparison of sol-gel and co-precipitation methods on the structural properties and phase transformation of γ and α-Al2O3 nanoparticles [J]. Advances in Manufacturing, 2013, 1(2): 176-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn