1. Choudhury IA, El-Baradie MA (1998) Machinability of nickel-base super alloys:a general review. J Mater Process Technol 77(1):278-284 2. Kong XW, Li B, Jin ZH et al (2011) Broaching performance of superalloy GH4169 based on FEM. J Mater Sci Technol 27(12):1178-1184 3. Pervaiz S, Rashid A, Deiab I et al (2014) Influence of tool materials on machinability of titanium- and nickel-based alloys:a review. Mater Manuf Processes 29(3):219-252 4. Joliet R, Kansteiner M, Kersting P (2015) A process model for force-controlled honing simulations. Procedia CIRP 28:46-51 5. Buj-Corral I, Vivancos-Calvet J, Coba-Salcedo M (2014) Modelling of surface finish and material removal rate in rough honing. Precis Eng 38(1):100-108 6. BŠhre D, Schmitt C, Moos U (2012) Analysis of the differences between force control and feed control strategies during the honing of bores. Procedia CIRP 1:377-381 7. Vrac DS, Sidjanin LP, Kovac PP et al (2012) The influence of honing process parameters on surface quality, productivity, cutting angle and coefficients of friction. Ind Lubr Tribol 64(2):77-83 8. Gafarov AM, Gafarov VA, Aliev GS (2011) Surface roughness in honing with dosed removal of surface layer. Russ Eng Res 31(10):1030-1033 9. Hecker RL, Liang SY (2003) Predictive modeling of surface roughness in grinding. Int J Mach Tools Manuf 43(8):755-761 10. Kumar S, Paul S (2012) Numerical modelling of ground surface topography:effect of traverse and helical superabrasive grinding with touch dressing. Prod Eng Res Devel 6(2):199-204 11. Chakrabarti S, Paul S (2008) Numerical modelling of surface topography in superabrasive grinding. Int J Adv Manuf Technol 39(1/2):29-38 12. Chen H, Tang J (2015) A model for prediction of surface roughness in ultrasonic-assisted grinding. Int J Adv Manuf Technol 77(1/4):643-651 13. Mahesh G, Muthu S, Devadasan SR (2015) Prediction of surface roughness of end milling operation using genetic algorithm. Int J Adv Manuf Technol 77(1/4):369-381 14. Goeldel B, El Mansori M, Dumur D (2012) Macroscopic simulation of the liner honing process. CIRP Ann 61(1):319-322 15. Goeldel B, Mansori ME, Dumur D (2013) Simulation of roughness and surface texture evolution at macroscopic scale during cylinder honing process. Procedia CIRP 8:27-32 16. Spencer A, Almqvist A, Larsson R (2011) A numerical model to investigate the effect of honing angle on the hydrodynamic lubrication between a combustion engine piston ring and cylinder liner. Proceed Institut Mech Eng Part J J Eng Tribol 225(7):683-689 17. Moos U, Bähre D (2015) Analysis of process forces for the precision honing of small bores. Procedia CIRP 31:387-392 18. Schmitt C, Bähre D (2014) Analysis of the process dynamics for the precision honing of bores. Procedia CIRP 17:692-697 19. Schmitt C, Bähre D (2013) An approach to the calculation of process forces during the precision honing of small bores. Procedia CIRP 7:282-287 20. Reizer R (2011) Simulation of 3D gaussian surface topography. Wear 271(3/4):539-543 21. Pawlus P (2008) Simulation of stratified surface topographies. Wear 264(5/6):457-463 22. Lu Y, Li J, Liang R et al (2020) Investigation on the effect of honing parameters on cylindricity of engine cylinder liner. Int J Adv Manuf Technol 111(11/12):3111-3122 23. Zhou X, Xi F (2002) Modeling and predicting surface roughness of the grinding process. Int J Mach Tools Manuf 42(8):969-977 24. Zhang X, Zhou Z (2020) Analytically predicating the multi-dimensional accuracy of the honed engine cylinder bore. J Tribol 142:1-23 25. Gassilloud R, Ballif C, Gasser P et al (2005) Deformation mechanisms of silicon during nanoscratching. Physica Status Solidi (a):Appl Mater Sci 202(15):2858-2869 26. Son S, Lim H, Ahn J (2006) The effect of vibration cutting on minimum cutting thickness. Int J Mach Tools Manuf 46(15):2066-2072 |