Advances in Manufacturing ›› 2025, Vol. 13 ›› Issue (4): 701-717.doi: 10.1007/s40436-024-00536-7
Yan-Jun Lu1, Ming-Rong Guo1, Yong-Qi Dai1, Qiang Wang2, Hu Luo3
Received:2024-01-18
Revised:2024-02-28
Published:2025-12-06
Contact:
Qiang Wang Email:E-mail:wangq6@sustech.edu.cn
E-mail:wangq6@sustech.edu.cn
Supported by:Yan-Jun Lu, Ming-Rong Guo, Yong-Qi Dai, Qiang Wang, Hu Luo. Experimental study on ultrasonic vibration-assisted grinding of quartz glass microchannel[J]. Advances in Manufacturing, 2025, 13(4): 701-717.
| [1] Battat S, Weitz DA, Whitesides GM (2022) An outlook on microfluidics: the promise and the challenge. Lab Chip 22(3):530-536 [2] Wu J, Dong M, Rigatto C et al (2018) Lab-on-chip technology for chronic disease diagnosis. NPJ Digit Med 1:7. https://doi.org/10.1038/s41746-017-0014-0 [3] Berlanda SF, Breitfeld M, Dietsche CL et al (2021) Recent advances in microfluidic technology for bioanalysis and diagnostics. Anal Chem 93(1):311-331 [4] Yew M, Ren Y, Koh KS et al (2019) A review of state-of-the-art microfluidic technologies for environmental applications: detection and remediation. Glob Chall 3(1):1800060. https://doi.org/10.1002/gch2.201800060 [5] Liu Y, Xu G, Sun J et al (2015) Investigation of the roughness effect on flow behavior and heat transfer characteristics in microchannels. Int J Heat Mass Transf 83:11-20 [6] Timung S, Chaudhuri J, Borthakur MP et al (2017) Electric field mediated spraying of miniaturized droplets inside microchannel. Electrophoresis 38(11):1450-1457 [7] He F, Liao Y, Lin J et al (2014) Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass. Sensors (Basel) 14(10):19402-19440 [8] Peng Y, Jiang S, Xia L et al (2020) Direct ink writing combined with metal-assisted chemical etching of microchannels for the microfluidic system applications. Sens Act A 315:112320. https://doi.org/10.1016/j.sna.2020.112320 [9] Xie J, Xie HF, Liu XR et al (2012) Dry micro-grooving on Si wafer using a coarse diamond grinding. Int J Mach Tools Manuf 61:1-8 [10] Li Y, Qu S (2013) Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips. Curr Appl Phys 13(7):1292-1295 [11] Nakanishi H, Nishimoto T, Nakamura N et al (1997) Fabrication of electrophoresis devices on quartz and glass substrates using a bonding with HF solution. In: IEEE the 10th annual international workshop on micro electro mechanical systems, an investigation of micro structures, sensors, actuators, machines and robots, 26?30 January, Nagoya, Japan, pp 299-304, https://doi.org/10.1109/MEMSYS.1997.581834 [12] Shafique MF, Laister A, Clark M et al (2011) Fabrication of embedded microfluidic channels in low temperature co-fired ceramic technology using laser machining and progressive lamination. J Eur Ceram Soc 31(13):2199-2204 [13] Kumar J (2013) Ultrasonic machining—a comprehensive review. Mach Sci Technol 17(3):325-379 [14] Ding K, Fu Y, Su H et al (2014) Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining. J Mater Process Technol 214(12):2900-2907 [15] Zhang C, Yuan S, Amin M et al (2015) Development of a cutting force prediction model based on brittle fracture for C/SiC in rotary ultrasonic facing milling. Int J Adv Manuf Technol 85(1/4):573-583 [16] Zhang JH, Zhao Y, Tian FQ et al (2015) Kinematics and experimental study on ultrasonic vibration-assisted micro end grinding of silica glass. Int J Adv Manuf Technol 78(9/12):1893-1904 [17] Lv D (2016) Influences of high-frequency vibration on tool wear in rotary ultrasonic machining of glass BK7. Int J Adv Manuf Technol 84(5):1443-1455 [18] Lakhdari F, Bouzid D, Belkhir N et al (2016) Surface and subsurface damage in Zerodur? glass ceramic during ultrasonic assisted grinding. Int J Adv Manuf Technol 90(5/8):1993-2000 [19] Wang J, Zhang C, Feng P et al (2015) A model for prediction of subsurface damage in rotary ultrasonic face milling of optical K9 glass. Int J Adv Manuf Technol 83(1/4):347-355 [20] Zhang C, Feng P, Zhang J et al (2012) Investigation into the rotary ultrasonic face milling of K9 glass with mechanism study of material removal. Int J Manuf Technol Manage 25(4):248-266 [21] Tian C, Chen X, Li D et al (2017) Analysis of surface formation of rotary ultrasonic milling of quartz glass based on nano-indentation experiment. Proc Eng 174:470-476 [22] Li C, Zhang F, Meng B et al (2017) Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics. Ceram Int 43(3):2981-2993 [23] Sun G, Shi F, Ma Z (2020) Effects of axial ultrasonic vibration on grinding quality in peripheral grinding and end grinding of ULE. Int J Adv Manuf Technol 109(7/8):2285-2298 [24] Chen Y, Su H, Qian N et al (2021) Ultrasonic vibration-assisted grinding of silicon carbide ceramics based on actual amplitude measurement: grinding force and surface quality. Ceram Int 47(11):15433-15441 [25] Zhou W, Tang J, Chen H et al (2019) A comprehensive investigation of surface generation and material removal characteristics in ultrasonic vibration assisted grinding. Int J Mech Sci 156:14-30 [26] Chen JB, Fang QH, Wang CC et al (2016) Theoretical study on brittle-ductile transition behavior in elliptical ultrasonic assisted grinding of hard brittle materials. Precis Eng 46:104-117 [27] Nguyen TT, Asakura Y, Koda S et al (2017) Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency. Ultrason Sonochem 39:301-306 [28] Xie J, Zhuo YW, Tan TW (2011) Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel. Precis Eng 35(1):173-182 [29] Jiang B, Zhu L, Min L et al (2019) Characterization of microchannel replicability of injection molded electrophoresis microfluidic chips. Polymers (Basel) 11(4):608. https://doi.org/10.3390/polym11040608 [30] Huang C, Zhou M, Zhang H (2022) Investigations on the micro-interactions of grit-workpiece and forces prediction in ultrasonic vibration side grinding of optical glass. J Mater Process Technol 300:117415. https://doi.org/10.1016/j.jmatprotec.2021.117415 [31] Liu Y, Liu Z, Wang X et al (2020) Experimental study on tool wear in ultrasonic vibration-assisted milling of C/SiC composites. Int J Adv Manuf Technol 107(1/2):425-436 |
| [1] | Zhen-Jing Duan, Shuai-Shuai Wang, Shu-Yan Shi, Ji-Yu Liu, Yu-Heng Li, Zi-Heng Wang, Chang-He Li, Yu-Yang Zhou, Jin-Long Song, Xin Liu. Surface quality evaluation of cold plasma and NMQL multi-field coupling eco-friendly micro-milling 7075-T6 aluminum alloy [J]. Advances in Manufacturing, 2025, 13(1): 69-87. |
| [2] | Xiao-Fei Lei, Wen-Feng Ding, Biao Zhao, Dao-Hui Xiang, Zi-Ang Liu, Chuan Qian, Qi Liu, Dong-Dong Xu, Yan-Jun Zhao, Jian-Hui Zhu. Surface roughness model of ultrasonic vibration-assisted grinding GCr15SiMn bearing steel and surface topography evaluation [J]. Advances in Manufacturing, 2025, 13(1): 88-104. |
| [3] | Xin Wang, Qing-Liao He, Biao Zhao, Wen-Feng Ding, Qi Liu, Dong-Dong Xu. Effects of tool coating and tool wear on the surface and chip morphology in side milling of Ti2AlNb intermetallic alloys [J]. Advances in Manufacturing, 2025, 13(1): 155-166. |
| [4] | Jin Zhang, Li Ling, Qian-Yue Wang, Xue-Feng Huang, Xin-Zhen Kang, Gui-Bao Tao, Hua-Jun Cao. Surface quality investigation in high-speed dry milling of Ti-6Al-4V by using 2D ultrasonic-vibration-assisted milling platform [J]. Advances in Manufacturing, 2024, 12(2): 349-364. |
| [5] | Long-Hua Xu, Chuan-Zhen Huang, Zhen Wang, Han-Lian Liu, Shui-Quan Huang, Jun Wang. Novel intelligent reasoning system for tool wear prediction and parameter optimization in intelligent milling [J]. Advances in Manufacturing, 2024, 12(1): 76-93. |
| [6] | Xue-hong Shen, Chang-Feng Yao, Liang Tan, Ding-Hua Zhang. Prediction model of surface integrity characteristics in ball end milling TC17 titanium alloy [J]. Advances in Manufacturing, 2023, 11(3): 541-565. |
| [7] | Lorcan O'Toole, Feng-Zhou Fang. Optimal tool design in micro-milling of difficult-to-machine materials [J]. Advances in Manufacturing, 2023, 11(2): 222-247. |
| [8] | Chang-Yong Yang, Zhi Wang, Hao Su, Yu-Can Fu, Nian-Hui Zhang, Wen-Feng Ding. Numerical analysis and experimental validation of surface roughness and morphology in honing of Inconel 718 nickel-based superalloy [J]. Advances in Manufacturing, 2023, 11(1): 130-142. |
| [9] | Vitor F. C. Sousa, Francisco J. G. Silva, Ricardo Alexandre, José S. Fecheira, Gustavo Pinto, Andresa Baptista. Experimental study on the wear evolution of different PVD coated tools under milling operations of LDX2101 duplex stainless steel [J]. Advances in Manufacturing, 2023, 11(1): 158-179. |
| [10] | Jiang Guo, Xing-Yu Wang, Yong Zhao, Chen-Yi Hou, Xu Zhu, Yin-Di Cai, Zhu-Ji Jin, Ren-Ke Kang. On-machine measurement of tool nose radius and wear during precision/ultra-precision machining [J]. Advances in Manufacturing, 2022, 10(3): 368-381. |
| [11] | Da-Xiang Deng, Jian Zheng, Xiao-Long Chen, Guang Pi, Yong-Heng Liu. Fabrication of micro pin fins on inclined V-shaped microchannel walls via laser micromilling [J]. Advances in Manufacturing, 2022, 10(2): 220-234. |
| [12] | Long-Hua Xu, Chuan-Zhen Huang, Jia-Hui Niu, Jun Wang, Han-Lian Liu, Xiao-Dan Wang. Prediction of cutting power and surface quality, and optimization of cutting parameters using new inference system in high-speed milling process [J]. Advances in Manufacturing, 2021, 9(3): 388-402. |
| [13] | Lorcan O'Toole, Cheng-Wei Kang, Feng-Zhou Fang. Precision micro-milling process: state of the art [J]. Advances in Manufacturing, 2021, 9(2): 173-205. |
| [14] | Guo Zhou, Chao Xu, Yuan Ma, Xiao-Hao Wang, Ping-Fa Feng, Min Zhang. Prediction and control of surface roughness for the milling of Al/SiC metal matrix composites based on neural networks [J]. Advances in Manufacturing, 2020, 8(4): 486-507. |
| [15] | Peng Lyu, Min Lai, Feng-Zhou Fang. Nanometric polishing of lutetium oxide by plasma-assisted etching [J]. Advances in Manufacturing, 2020, 8(4): 440-446. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn