1. Deng P, Ren G, Yuan W et al (2015) An integrated framework of formal methods for interaction behaviors among industrial equipments. Microprocess Microsyst 39:1296-1304
2. Henriquez P, Alonso JB, Ferrer MA et al (2014) Review of automatic fault diagnosis systems using audio and vibration signals. IEEE Trans Syst Man Cybern Syst 44:642-652
3. Zhao C (2014) Fault subspace selection and analysis of relative changes based reconstruction modeling for multi-fault diagnosis. In:The 26th Chinese, control and decision conference (2014 CCDC), Changsha, pp 235-240
4. Movahhedy MR, Mosaddegh P (2006) Prediction of chatter in high speed milling including gyroscopic effects. Int J Mach Tools Manuf 46:996-1001
5. Affonso LOA (2013) Machinery failure analysis handbook:sustain your operations and maximize uptime. Gulf Publishing Company, Houston
6. Van Horenbeek A, Pintelon L (2013) A dynamic predictive maintenance policy for complex multi-component systems. Reliab Eng Syst Saf 120:39-50
7. Jardine AK, Lin D, Banjevic D (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 20:1483-1510
8. Li Z, Wang K, He Y (2016) Industry 4.0:potentials for predictive maintenance. In:International workshop of advanced manufacturing and automation, Manchester
9. Wang CC, Kang Y, Chung YL (2012) The gearbox fault detection of machine center by using time frequency order spectrum. Adv Mater Res 452-453:1329-1333
10. Wu CW, Tang CH, Chang CF et al (2012) Thermal error compensation method for machine center. Int J Adv Manuf Technol 59:681-689
11. Abbasion S, Rafsanjani A, Farshidianfar A et al (2007) Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine. Mech Syst Signal Process 21:2933-2945
12. Lee J, Kao HA, Yang S (2014) Service innovation and smart analytics for Industry 4.0 and big data environment. Proc CIRP 16:3-8
13. Zamfirescu CB, Pirvu BC, Schlick J et al (2013) Preliminary insides for an anthropocentric cyber-physical reference architecture of the smart factory. Stud Inform Control 22:269-278
14. Wang K (2016) Intelligent pedictive maintenance (IPdM) system:Industry 4.0 scenario. WIT Trans Eng Sci 113:259-268
15. Shi S, Lin J, Wang X et al (2015) Analysis of the transient backlash error in CNC machine tools with closed loops. Int J Mach Tools Manuf 93:49-60
16. Duro JA, Padget JA, Bowen CR et al (2016) Multi-sensor data fusion framework for CNC machining monitoring. Mech Syst Signal Process 66:505-520
17. Sparham M, Sarhan AA, Mardi N et al (2016) Cutting force analysis to estimate the friction force in linear guideways of CNC machine. Measurement 85:65-79
18. Usop Z, Sarhan AA, Mardi N et al (2015) Measuring of positioning, circularity and static errors of a CNC vertical machining centre for validating the machining accuracy. Measurement 61:39-50
19. Bort CMG, Leonesio M, Bosetti P (2016) A model-based adaptive controller for chatter mitigation and productivity enhancement in CNC milling machines. Robot Comput Integr Manuf 40:34-43
20. Liu K, Sun M, Zhu T et al (2016) Modeling and compensation for spindle's radial thermal drift error on a vertical machining center. Int J Mach Tools Manuf 105:58-67
21. Fan K, Yang J, Yang L (2015) Unified error model based spatial error compensation for four types of CNC machining center:part I-singular function based unified error model. Mech Syst Signal Process 60:656-667
22. Gorecky D, Schmitt M, Loskyll M et al (2014) Human-machineinteraction in the Industry 4.0 era. In:The 12th IEEE international conference on industrial informatics (INDIN), Porto Alegre, Brazil, pp 289-294
23. Wang KS (2014) Intelligent and integrated RFID (Ⅱ-RFID) system for improving traceability in manufacturing. Adv Manuf 2:106-120
24. Wang K, Wang Y (2012) Towards a next generation of manufacturing:zero-defect manufacturing (ZDM) using data mining approaches. Tapir Academic Press, New York
25. Drath R, Horch A (2014) Industrie 4.0:hit or hype? IEEE Ind Electron Mag 8:56-58
26. Baheti R, Gill H (2011) Cyber-physical systems. Impact Control Technol 12:161-166
27. Chaves LW, Nochta Z (2011) Breakthrough towards the internet of things. In:Ranasinghe DC, Sheng QZ, Zeadally S (eds) Unique radio innovation for the 21st century. Springer, Berlin, pp 25-38
28. Arslan AK, Colak C, Sarihan ME (2016) Different medical data mining approaches based prediction of ischemic stroke. Comput Methods Programs Biomed 130:87-92
29. Sohrabi MK, Akbari S (2016) A comprehensive study on the effects of using data mining techniques to predict tie strength. Comput Hum Behav 60:534-541
30. Han J, Kamber M, Pei J (2011) Data mining:concepts and techniques. Elsevier, New York
31. Wang KS (2014) Key techniques in intelligent predictive maintenance (IPdM)-a framework of intelligent faults diagnosis and prognosis system (IFDaPS). Adv Mater Res 1039:490-505
32. Son JD, Niu G, Yang BS et al (2009) Development of smart sensors system for machine fault diagnosis. Expert Syst Appl 36:11981-11991
33. Sumathi S, Sivanandam S (2006) Introduction to data mining and its applications. Springer, Berlin
34. Siguenza-Guzman L, Saquicela V, Avila-Ordóñez E et al (2015) Literature review of data mining applications in academic libraries. J Acad Librariansh 41:499-510
35. Girija N, Srivatsa SK (2006) A research study:using data mining in knowledge base business strategies. Inf Technol J 5(3):590-600
36. Kohavi R, Provost F (1998) Glossary of terms. Mach Learn 30:271-274
37. Murphy KP (2012) Machine learning:a probabilistic perspective. MIT press, Cambridge
38. Vachtsevanos G, Lewis F, Roemer M et al (2006) Intelligent fault diagnosis and prognosis for engineering systems. In:IEEE global telecommunications conference, San Francisco, California, pp 2771-2776
39. Gan M, Wang C (2016) Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech Syst Signal Process 72:92-104
40. Siddique A, Yadava G, Singh B (2003) Applications of artificial intelligence techniques for induction machine stator fault diagnostics:review. In:The 4th IEEE international symposium on diagnostics for electric machines, power electronics and drives, Georgia, pp 29-34 |