Advances in Manufacturing ›› 2020, Vol. 8 ›› Issue (2): 144-159.doi: 10.1007/s40436-020-00297-z
• ARTICLES • Previous Articles Next Articles
Jin-Shi Wang1, Xiao-Dong Zhang1, Feng-Zhou Fang1,2
Received:2019-08-31
Revised:2020-01-03
Online:2020-06-25
Published:2020-06-08
Contact:
Feng-Zhou Fang
E-mail:fzfang@tju.edu.cn
Supported by:Jin-Shi Wang, Xiao-Dong Zhang, Feng-Zhou Fang. Numerical study via total Lagrangian smoothed particle hydrodynamics on chip formation in micro cutting[J]. Advances in Manufacturing, 2020, 8(2): 144-159.
| 1. Fang FZ, Xu FF (2018) Recent advances in micro/nano-cutting:effect of tool edge and material properties. Nanomanuf Metrol 1:4-31 2. Ng EG, El-Wardany TI, Dumitrescu M et al (2002) Physics-based simulation of high speed machining. Mach Sci Technol 6:301-329 3. Niu W, Mo R, Liu GR et al (2018) Modeling of orthogonal cutting process of A2024-T351 with an improved SPH method. Int J Adv Manuf Technol 95:905-919 4. Nasr MNA, Ng EG, Elbestawi MA (2007) Modelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L. Int J Mach Tool Manuf 47:401-411 5. Movahhedy MR, Altintas Y, Gadala MS (2002) Numerical analysis of metal cutting with chamfered and blunt tools. J Manuf Sci Eng 124:178-188 6. Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55:1-34 7. Liu M, Zhang Z (2019) Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Sci China Phys Mech 62:984701 8. Ikawa N, Shimada S, Tanaka H (1992) Minimum thickness of cut in micromachining. Nanotechnology 3:6 9. Xiao G, To S, Zhang G (2015) Molecular dynamics modelling of brittle-ductile cutting mode transition:case study on silicon carbide. Int J Mach Tool Manuf 88:214-222 10. Pei QX, Lu C, Lee HP et al (2009) Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations. Nanoscale Res Lett 4:444-451 11. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013-1024 12. Liu G, Liu M (2003) Smoothed particle hydrodynamics:a meshfree particle method. World Scientific, Singapore 13. Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116:123-134 14. Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Meth Eng 47:1189-1214 15. Niu W, Mo R, Chang Z et al (2019) Investigating the effect of cutting parameters of Ti-6Al-4 V on surface roughness based on a SPH cutting model. Appl Sci 9:654 16. Liu MB, Zhang ZL, Feng DL (2017) A density-adaptive SPH method with kernel gradient correction for modeling explosive welding. Comput Mech 60:513-529 17. Vignjevic R, Reveles JR, Campbell J (2006) SPH in a total Lagrangian formalism. Comput Model Eng 4:181-198 18. Ganzenmüller GC (2015) An hourglass control algorithm for Lagrangian smooth particle hydrodynamics. Comput Meth Appl Mech Eng 286:87-106 19. Limido J, Espinosa C, Salaun M et al (2011) Metal cutting modelling SPH approach. Int J Mach Mach Mater 9:177-196 20. Olleak AA, Nasr MNA, El-Hofy HA (2015) The Influence of Johnson-Cook parameters on SPH modeling of orthogonal cutting of AISI 316L. In:10th European LS-DYNA conference, Würzburg 21. Avachat CS, Cherukuri HP (2015) A parametric study of the modeling of orthogonal machining using the smoothed particle hydrodynamics method. In:ASME 2015 international mechanical engineering congress and exposition. American Society of Mechanical Engineers 22. Liu Y, Li B, Wu C et al (2018) Smoothed particle hydrodynamics simulation and experimental analysis of SiC ceramic grinding mechanism. Ceram Int 44:12194-12203 23. Demiral M (2014) SPH modeling of vibro-assisted turning of Ti alloy:influence of vibration parameters. J Vibroeng. 16:2685-2694 24. Xi Y, Bermingham M, Wang G et al (2014) SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy. Comput Mater Sci 84:188-197 25. Rausch MK, Karniadakis GE, Humphrey JD (2017) Modeling soft tissue damage and failure using a combined particle/continuum approach. Biomech Model Mech 16:249-261 26. Islam MRI, Peng C (2019) A Total Lagrangian SPH method for modelling damage and failure in solids. Int J Mech Sci 157:498-511 27. Leroch S, Varga M, Eder SJ et al (2016) Smooth particle hydrodynamics simulation of damage induced by a spherical indenter scratching a viscoplastic material. Int J Solids Struct 81:188-202 28. Varga M, Leroch S, Rojacz H et al (2017) Study of wear mechanisms at high temperature scratch testing. Wear 388:112-118 29. Varga M, Leroch S, Eder SJ et al (2017) Meshless microscale simulation of wear mechanisms in scratch testing. Wear 376:1122-1129 30. Varga M, Leroch S, Eder SJ et al (2019) Influence of velocity on high-temperature fundamental abrasive contact:a numerical and experimental approach. Wear 426:370-371 31. Mishra T, Ganzenmüller GC, de Rooij M et al (2019) Modelling of ploughing in a single-asperity sliding contact using material point method. Wear 418:180-190 32. Bonet J, Kulasegaram S, Rodriguez-Paz MX et al (2004) Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. Comput Meth Appl Mech Eng 193:1245-1256 33. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1-19 34. Desbrun M, Gascuel MP (1996) Smoothed particles:a new paradigm for animating highly deformable bodies. In:Ronan B, Gerard H (eds) Computer animation and simulation'96. Springer, Vienna, pp 61-76 35. Prawoto Y, Fanone M, Shahedi S et al (2012) Computational approach using Johnson-Cook model on dual phase steel. Comput Mater Sci 54:48-55 |
| [1] | Chao-Jun Zhang, Song-Qing Li, Pei-Xuan Zhong, Fei-Fan Zhang, Wen-Jun Deng. Cutting performance and effectiveness evaluation on organic monolayer embrittlement in ductile metal precision machining [J]. Advances in Manufacturing, 2025, 13(2): 395-412. |
| [2] | Yue Meng, Sheng-Ming Dong, Xin-Sheng Sun, Shi-Liang Wei, Xian-Li Liu. A mechanism-data hybrid-driven modeling method for predicting machine tool-cutting energy consumption [J]. Advances in Manufacturing, 2025, 13(1): 167-195. |
| [3] | John O'Hara, Feng-Zhou Fang. Design and fabrication of an aluminium oxide cutting insert with an internal cooling channel [J]. Advances in Manufacturing, 2024, 12(4): 619-641. |
| [4] | Yang Lu, Jian-Xin Deng, Zhi-Hui Zhang, Jia-Xing Wu, Ran Wang, Yi-Chen Bao. Cutting performance of saw blades with microtextured rougher and finisher sawteeth [J]. Advances in Manufacturing, 2024, 12(2): 317-334. |
| [5] | Yan Liu, Qiu Tang, Xin-Cheng Tian. Model-driven path planning for robotic plasma cutting of branch pipe with single Y-groove based on pipe-rotating scheme [J]. Advances in Manufacturing, 2024, 12(1): 94-107. |
| [6] | Guo-Liang Liu, Jin-Tao Zheng, Chuan-Zhen Huang, Shu-Feng Sun, Xin-Fu Liu, Long-Jie Dai, De-Xiang Wang, Xiang-Yu Wang. Coupling effect of micro-textured tools and cooling conditions on the turning performance of aluminum alloy 6061 [J]. Advances in Manufacturing, 2023, 11(4): 663-681. |
| [7] | Qing-An Yin, Zhan-Qiang Liu, Bing Wang. Prediction of temperature field in machined workpiece surface during the cutting of Inconel 718 coated with surface-active media [J]. Advances in Manufacturing, 2023, 11(3): 378-389. |
| [8] | Guo-Jian He, Lin Gu, Ying-Mou Zhu, Ji-Peng Chen, Wan-Sheng Zhao, K. P. Rajurkar. Electrical arc contour cutting based on a compound arc breaking mechanism [J]. Advances in Manufacturing, 2022, 10(4): 583-595. |
| [9] | Zhi-Fu Xue, Min Lai, Fei-Fei Xu, Feng-Zhou Fang. Molecular dynamics study on surface formation and phase transformation in nanometric cutting of β-Sn [J]. Advances in Manufacturing, 2022, 10(3): 356-367. |
| [10] | Long-Xu Yao, Zhan-Qiang Liu, Qing-Hua Song, Bing Wang, Yu-Kui Cai. Effects of process parameters on periodic impact force exerting on cutting tool in ultrasonic vibration-assisted oblique turning [J]. Advances in Manufacturing, 2022, 10(3): 411-427. |
| [11] | Dong-Ju Chen, Shu-Pei Li, Xuan Zhang, Jin-Wei Fan. Relationship between dynamic characteristics of air film of aerostatic spindle and mid-frequency of surface topography [J]. Advances in Manufacturing, 2022, 10(3): 428-442. |
| [12] | Ming-Xian Xu, Liang-Shan Xiong, Bao-Yi Zhu, Ling-Feng Zheng, Kai Yin. Experimental research on the critical conditions and critical equation of chip splitting when turning a C45E4 disc workpiece symmetrically with a high-speed steel double-edged turning tool [J]. Advances in Manufacturing, 2022, 10(2): 159-174. |
| [13] | Muhammad Rizwan Awan, Hernán A. González Rojas, José I. Perat Benavides, Saqib Hameed. Experimental technique to analyze the influence of cutting conditions on specific energy consumption during abrasive metal cutting with thin discs [J]. Advances in Manufacturing, 2022, 10(2): 260-271. |
| [14] | Xiao-Xiang Zhu, Wen-Hu Wang, Rui-Song Jiang, Yi-Feng Xiong, Xiao-Fen Liu. Thrust force model for ultrasonic-assisted micro drilling of DD6 superalloy [J]. Advances in Manufacturing, 2022, 10(2): 313-325. |
| [15] | Kai-Ning Shi, Ning Liu, Cong-Le Liu, Jun-Xue Ren, Shan-Shan Yang, Wei Chit Tan. Indirect approach for predicting cutting force coefficients and power consumption in milling process [J]. Advances in Manufacturing, 2022, 10(1): 101-113. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn