Advances in Manufacturing ›› 2020, Vol. 8 ›› Issue (4): 486-507.doi: 10.1007/s40436-020-00326-x
• ARTICLES • Previous Articles Next Articles
Guo Zhou1, Chao Xu2,3, Yuan Ma2,3, Xiao-Hao Wang1,2, Ping-Fa Feng2,3, Min Zhang2
Received:2020-02-17
Revised:2020-05-08
Online:2020-11-25
Published:2020-12-07
Contact:
Min Zhang
E-mail:zhang.min@sz.tsinghua.edu.cn
Guo Zhou, Chao Xu, Yuan Ma, Xiao-Hao Wang, Ping-Fa Feng, Min Zhang. Prediction and control of surface roughness for the milling of Al/SiC metal matrix composites based on neural networks[J]. Advances in Manufacturing, 2020, 8(4): 486-507.
| 1. Hekner B, Myalski J, Pawlik T et al (2017) Effect of carbon in fabrication Al-SiC nanocomposites for tribological application. Materials 10(6):679. https://doi.org/10.3390/ma10060679 2. Dong Z, Zheng F, Zhu X et al (2017) Characterization of material removal in ultrasonically assisted grinding of SiCp/Al with high volume fraction. Int J Adv Manuf Technol 93(5/8):2827-2839 3. Xiang J, Xie L, Gao F et al (2018) Methodology for dependencebased integrated constitutive modelling:an illustrative application to SiCp/Al composites. Ceram Int 44(10):11765-11777 4. Ozben T, Kilickap E, Cakir O (2008) Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. J Mater Process Technol 198(1/3):220-225 5. Kennedy FE, Balbahadur AC, Lashmore DS (1997) The friction and wear of Cu-based silicon carbide particulate metal matrix composites for brake applications. Wear 203:715-721 6. Ravikiran A, Surappa MK (1997) Effect of sliding speed on wear behaviour of A356 Al-30 wt.%SiCp MMC. Wear 206(1/2):33-38 7. Chen J, Gu L, Liu X et al (2018) Combined machining of SiC/Al composites based on blasting erosion arc machining and CNC milling. Int J Adv Manuf Technol 96(1/4):111-121 8. Monaghan JM (1996) The use of a quick-stop test to study the chip formation of a SiC/Al metal matrix composite material and its matrix alloy. Int J Fatigue 18(3):213-217 9. Hocheng H, Yen SB, Ishihara T et al (1997) Fundamental turning characteristics of a tribology-favored graphite/aluminum alloy composite material. Compos A Appl Sci Manuf 28(9/10):883-890 10. Chan KC, Cheung CF, Ramesh MV et al (2001) A theoretical and experimental investigation of surface generation in diamond turning of an Al6061/SiCp metal matrix composite. Int J Mech Sci 43(9):2047-2068 11. Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites:effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tools Manuf 48(15):1613-1625 12. Manna A, Bhattacharyya B (2004) Investigation for optimal parametric combination for achieving better surface finish during turning of Al/SiC-MMC. Int J Adv Manuf Technol 23(9/10):658-665 13. Palanikumar K, Karthikeyan R (2007) Assessment of factors influencing surface roughness on the machining of Al/SiC particulate composites. Mater Des 28(5):1584-1591 14. Przestacki D, Szymanski P, Wojciechowski S (2016) Formation of surface layer in metal matrix composite A359/20SiCP during laser assisted turning. Compos A Appl Sci Manuf 91:370-379 15. Wojciechowski S, Nowakowski Z, Majchrowski R et al (2017) Surface texture formation in precision machining of direct laser deposited tungsten carbide. Adv Manuf 5(3):251-260 16. Kilickap E (2016) Effect of cutting environment and heat treatment on the surface roughness of drilled Al/SiC MMC. Mater Test 58(4):357-361 17. Kilickap E, Cakir O, Aksoy M et al (2005) Study of tool wear and surface roughness in machining of homogenized SiC-p reinforced aluminium metal matrix composite. J Mater Process Technol 164/165:862-867 18. Benardros PG, Vosniakos GC (2002) Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments. Robot Comput Integrated Manuf 18(5/6):343-354 19. Mahesh G, Muthu S, Devadasan SR (2015) Prediction of surface roughness of end milling operation using genetic algorithm. Int J Adv Manuf Technol 77(1/4):369-381 20. Kilickap E, Huseyinoglu M, Yardimeden (2011) A optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm. Int J Adv Manuf Technol 52(1/4):79-88 21. Khorasani AM, Yazdi MRS, Safizadeh MS (2011) Tool life prediction in face milling machining of 7075 Al by using artificial neural networks (ANN) and Taguchi design of experiment (DOE). Int J Eng Technol 3(1):30-35 22. Pimenov DY, Hassui A, Wojciechowski S et al (2019) Effect of the relative position of the face milling tool towards the workpiece on machined surface roughness and milling dynamics. Appl Sci 9(5):842. https://doi.org/10.3390/app9050842 23. Bustillo A, Correa M (2012) Using artificial intelligence to predict surface roughness in deep drilling of steel components. J Intell Manuf 23(5):1893-1902 24. Rodríguez JJ, Quintana G, Bustillo A et al (2017) A decisionmaking tool based on decision trees for roughness prediction in face milling. Int J Comput Integr Manuf 30(9):943-957 25. Çelik YH, Kilickap E, Yardimeden A (2014) Estimate of cutting forces and surface roughness in end milling of glass fiber reinforced plastic composites using fuzzy logic system. Sci Eng Compos Mater 21(3):435-443 26. Lin JT, Bhattacharyya D, Kecman V (2003) Multiple regression and neural networks analyses in composites machining. Compos Sci Technol 63(3/4):539-548 27. Mia M, Królczyk G, Maruda R et al (2019) Intelligent optimization of hard-turning parameters using evolutionary algorithms for smart manufacturing. Materials 12(6):879. https://doi.org/10.3390/ma12060879 28. Bustillo A, Díez-Pastor JF, Quintana G et al (2011) Avoiding neural network fine tuning by using ensemble learning:application to ball-end milling operations. Int J Adv Manuf Technol 57(5/8):521. https://doi.org/10.1007/s00170-011-3300-z 29. Kilickap E, Yardimeden A, Çelik YH (2017) Effect of cutting environment and heat treatment on the surface roughness in milling of Ti-6242S. Appl Sci 7(10):1064. https://doi.org/10.3390/app7101064 30. Manna A, Bhattacharayya B (2003) A study on machinability of Al/SiC-MMC. J Mater Process Technol 140(1/3):711-716 31. Xiang JF, Pang SQ, Xie LJ et al (2018) Investigation of cutting forces, surface integrity, and tool wear when high-speed milling of high-volume fraction SiCp/Al6063 composites in PCD tooling. Int J Adv Manuf Technol 98:1237-1251 32. Yuan ZJ, Geng L, Dong S (1993) Ultraprecision machining of SiCw/Al composites. CIRP Ann 42(1):107-109 33. Sahoo AK, Pradhan S (2013) Modeling and optimization of Al/SiCp MMC machining using Taguchi approach. Measurement 46(9):3064-3072 34. Khorasani AM, Yazdi MRS, Safizadeh MS (2011) Tool life prediction in face milling machining of 7075 Al by using artificial neural networks (ANN) and Taguchi design of experiment (DOE). Int J Eng Technol 3(1):30-35 35. Gologlu C, Sakarya N (2008) The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on Taguchi method. J Mater Process Technol 206(1/3):7-15 36. YalcinU Karaoglan AD, Korkut I (2013) Optimization of cutting parameters in face milling with neural networks and Taguchi based on cutting force, surface roughness and temperatures. Int J Prod Res 51(11):3404-3414 37. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal-matrix composites:part I:tool performance. J Mater Process Technol 83(1/3):151-158 38. Grzenda M, Bustillo A, Zawistowski P (2012) A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling. J Intell Manuf 23(5):1733-1743 39. Pala M, Caglar N, Elmas M et al (2008) Dynamic soil-structure interaction analysis of buildings by neural networks. Constr Build Mater 22(3):330-342 40. Hagan MT, Demuth HB, Beale MH (1996) Neural network design. PWS Pub. Co., Boston, p 3632 41. Hagan MT, Menhaj MB (1994) Training feed forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989-993 42. MacKay David JC (1991) Bayesian interpolation. Neural Comput 4(3):415-447 43. Bustillo A, Grzenda M, Macukow B (2016) Interpreting treebased prediction models and their data in machining processes. Integr Comput Aided Eng 23(4):349-367 44. Karabulut Ş (2015) Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method. Measurement 66:139-149 |
| [1] | Bo-Han Feng, Bo-Yan Li, Xin-Ting Jiang, Qi Zhou, You-Yi Bi. BRMPNet: bidirectional recurrent motion planning networks for generic robotic platforms in smart manufacturing [J]. Advances in Manufacturing, 2025, 13(3): 477-492. |
| [2] | Zhen-Jing Duan, Shuai-Shuai Wang, Shu-Yan Shi, Ji-Yu Liu, Yu-Heng Li, Zi-Heng Wang, Chang-He Li, Yu-Yang Zhou, Jin-Long Song, Xin Liu. Surface quality evaluation of cold plasma and NMQL multi-field coupling eco-friendly micro-milling 7075-T6 aluminum alloy [J]. Advances in Manufacturing, 2025, 13(1): 69-87. |
| [3] | Xiao-Fei Lei, Wen-Feng Ding, Biao Zhao, Dao-Hui Xiang, Zi-Ang Liu, Chuan Qian, Qi Liu, Dong-Dong Xu, Yan-Jun Zhao, Jian-Hui Zhu. Surface roughness model of ultrasonic vibration-assisted grinding GCr15SiMn bearing steel and surface topography evaluation [J]. Advances in Manufacturing, 2025, 13(1): 88-104. |
| [4] | Hao-Liang Shi, Ping-Yu Jiang. Quality control in multistage machining processes based on a machining error propagation event-knowledge graph [J]. Advances in Manufacturing, 2024, 12(4): 679-697. |
| [5] | Zhong-Jie Yue, Qiu-Ren Chen, Zu-Guo Bao, Li Huang, Guo-Bi Tan, Ze-Hong Hou, Mu-Shi Li, Shi-Yao Huang, Hai-Long Zhao, Jing-Yu Kong, Jia Wang, Qing Liu. Improving RSW nugget diameter prediction method: unleashing the power of multi-fidelity neural networks and transfer learning [J]. Advances in Manufacturing, 2024, 12(3): 409-427. |
| [6] | Jing Dai, Song-Zhe Xu, Chao-Yue Chen, Tao Hu, San-San Shuai, Wei-Dong Xuan, Jiang Wang, Zhong-Ming Ren. A multi-objective optimization based on machine learning for dimension precision of wax pattern in turbine blade manufacturing [J]. Advances in Manufacturing, 2024, 12(3): 428-446. |
| [7] | Jian Wang, Qiu-Ren Chen, Li Huang, Chen-Di Wei, Chao Tong, Xian-Hui Wang, Qing Liu. A data-driven approach for predicting the fatigue life and failure mode of self-piercing rivet joints [J]. Advances in Manufacturing, 2024, 12(3): 538-555. |
| [8] | Yuan-Zhe Hu, Ru-Xue Liu, Jia-Peng He, Guo-Wei Zhou, Da-Yong Li. Deep learning methods for roping defect analysis in aluminum alloy sheets: prediction and grading [J]. Advances in Manufacturing, 2024, 12(3): 576-590. |
| [9] | Yu-Tong Yang, Zhong-Yuan Qiu, Zhen Zheng, Liang-Xi Pu, Ding-Ding Chen, Jiang Zheng, Rui-Jie Zhang, Bo Zhang, Shi-Yao Huang. Al-enabled properties distribution prediction for high-pressure die casting Al-Si alloy [J]. Advances in Manufacturing, 2024, 12(3): 591-602. |
| [10] | Wen-Jie Wang, Zhao Liu, Ping Zhu. CMAGAN: classifier-aided minority augmentation generative adversarial networks for industrial imbalanced data and its application to fault prediction [J]. Advances in Manufacturing, 2024, 12(3): 603-618. |
| [11] | Qiang Gao, Ya-Ou Zhang, Xue-Cheng Xi, Yuan-Ding Wang, Xiao-Fei Chen, Wan-Sheng Zhao. Research on feed-pulse collaborative control method in micro-electrical discharge machining [J]. Advances in Manufacturing, 2024, 12(2): 270-287. |
| [12] | Jin Zhang, Li Ling, Qian-Yue Wang, Xue-Feng Huang, Xin-Zhen Kang, Gui-Bao Tao, Hua-Jun Cao. Surface quality investigation in high-speed dry milling of Ti-6Al-4V by using 2D ultrasonic-vibration-assisted milling platform [J]. Advances in Manufacturing, 2024, 12(2): 349-364. |
| [13] | Bo Wang, Zhong Jiang, Pei-Da Hu. Study on 6-DOF active vibration-isolation system of the ultra-precision turning lathe based on GA-BP-PID control for dynamic loads [J]. Advances in Manufacturing, 2024, 12(1): 33-60. |
| [14] | Long-Hua Xu, Chuan-Zhen Huang, Zhen Wang, Han-Lian Liu, Shui-Quan Huang, Jun Wang. Novel intelligent reasoning system for tool wear prediction and parameter optimization in intelligent milling [J]. Advances in Manufacturing, 2024, 12(1): 76-93. |
| [15] | Lai Hu, Jun Zha, Wei-Hua Zhao, Xiao-Fei Peng, Yao-Long Chen. Multi-dimensional controllability analysis of precision ball bearing integrity [J]. Advances in Manufacturing, 2023, 11(4): 682-693. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Tel: 86-21-66135510
Fax: 86-21-66132736
E-mail: aim@oa.shu.edu.cn