1. Oliver JN, Zhu D, Su Y et al (2019) Bioactive glass coatings on metallic implants for biomedical applications. Bioact Mater 4:261–270 2. Manam NS, Harun WSW, Shri DNA et al (2017) Study of corrosion in biocompatible metals for implants: a review. J Alloys Compd 701:698–715 3. Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R 87:1–57 4. Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R 77:1–34 5. Geetha M, Singh AK, Asokamani R et al (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425 6. Gu XN, Xie XH, Li N et al (2012) In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater 8:2360–2374 7. Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6(5):1680–1692 8. Mostaed E, Sikora-jasinska M, Drelich JW et al (2018) Zinc-based alloys for degradable vascular stent applications. Acta Biomater 71:1–23 9. Chen Y, Xu Z, Smith C et al (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 10(11):4561–4573 10. Yang YW, He CX, E DY et al (2020) Mg bone implant: features, developments and perspectives. Mater Des 185:108259. https://doi.org/10.1016/j.matdes.2019.108259 11. Wu G, Ibrahim JM, Chu PK (2013) Surface design of biodegradable magnesium alloys—a review. Surf Coatings Technol 233:2–12 12. Agarwal S, Curtin J, Duffy B et al (2016) Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifi cations. Mater Sci Eng C 68:948–963 13. Zhang S, Zhang X, Zhao C et al (2010) Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater 6:626–640 14. Witte F, Kaese V, Haferkamp H et al (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26:3557–3563 15. Thomas S, Medhekar NV, Frankel GS et al (2015) Corrosion mechanism and hydrogen evolution on Mg. Curr Opin Solid State Mater Sci 19:85–94 16. Pu Z, Song GL, Yang S et al (2012) Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy. Corros Sci 57:192–201 17. Jagadeesh GV, Gangi Setti S (2021) Bio-engineering and bio-design of new generation bioresorbable implants. Indian J Biochem Biophys 58:118–126 18. Liu D, Yang D, Li X et al (2018) Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: a review. J Mater Res Technol 8(1):1538–1549 19. Asri RIM, Harun WSW, Samykano M et al (2017) Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C 77:1261–1274 20. Pan HC, Ren YP, Fu H et al (2016) Recent developments in rare-earth free wrought magnesium alloys having high strength: a review. J Alloys Compd 663:321–331 21. Salahshoor M, Guo YB (2011) Surface integrity of biodegradable magnesium-calcium orthopedic implant by burnishing. J Mech Behav Biomed Mater 4(8):1888–1904 22. Jerez-Mesa R, Fargas G, Roa JJ et al (2021) Superficial effects of ball burnishing on trip steel AiSi 301LN sheets. Metals 11(1):1–12 23. Nguyen TT, Cao LH (2020) Optimization of the burnishing process for energy responses and surface properties. Int J Precis Eng Manuf 21(6):1143–1152 24. Hamadache H, Zemouri Z, Laouar L et al (2014) Improvement of surface conditions of 36 Cr Ni Mo 6 steel by ball burnishing process. J Mech Sci Technol 28(4):1491–1498 25. Gharbi F, Sghaier S, Al-Fadhalah KJ et al (2011) Effect of ball burnishing process on the surface quality and microstructure properties of AISI 1010 steel plates. J Mater Eng Perform 20(6):903–910 26. Ravindra BP, Ankamma K, Siva PT et al (2011) Effects of burnishing parameters on the surface characteristics, microstructure and microhardness in EN series steels. Trans Indian Inst Met 64(6):565–573 27. Rotella G, Rinaldi S, Filice L (2020) Roller burnishing of Ti6Al4V under different cooling/lubrication conditions and tool design: effects on surface integrity. Int J Adv Manuf Techno 106(1/2):431–440 28. Rotella G, Filice L, Micari F (2020) Improving surface integrity of additively manufactured GP1 stainless steel by roller burnishing. CIRP Ann 69(1):513–516 29. Banh QN, Shiou FJ (2016) Determination of optimal small ball-burnishing parameters for both surface roughness and superficial hardness improvement of STAVAX. Arab J Sci Eng 41(2):639–652 30. Revankar GD, Shetty R, Rao SS et al (2014) Analysis of surface roughness and hardness in ball burnishing of titanium alloy. Measurement 58:256–268 31. Yuan X, Sun Y, Li C et al (2017) Experimental investigation into the effect of low plasticity burnishing parameters on the surface integrity of TA2. Int J Adv Manuf Technol 88(1/4):1089–1099 32. Revankar GD, Shetty R, Rao SS et al (2014) Selection of optimal process parameters in ball burnishing of titanium alloy. Mach Sci Technol 18(3):464–483 33. Sequera A, Fu CH, Guo YB et al (2014) Surface integrity of Inconel 718 by ball burnishing. J Mater Eng Perform 23(9):3347–3353 34. Amdouni H, Bouzaiene H, Montagne A et al (2017) Modeling and optimization of a ball-burnished aluminum alloy flat surface with a crossed strategy based on response surface methodology. Int J Adv Manuf Technol 88(1/4):801–814 35. Yuan XL, Sun YW, Gao LS et al (2016) Effect of roller burnishing process parameters on the surface roughness and microhardness for TA2 alloy. Int J Adv Manuf Technol 85(5/8):1373–1383 36. Pang C, Luo H, Zhang Z et al (2017) Precipitation behavior and grain refinement of burnishing Al-Zn-Mg alloy. Prog Nat Sci Mater Int 28:54–59 37. Shiou FJ, Banh QN (2016) Development of an innovative small ball-burnishing tool embedded with a load cell. Int J Adv Manuf Technol 87(1/4):31–41 38. Jagadeesh GV, Gangi Setti S (2020) A current status of the residual stress characterization by the crystal lattice strain (diffraction) method. J Struct Chem 61(2):262–273 39. Rodríguez A, López de Lacalle LN, Celaya A et al (2012) Surface improvement of shafts by the deep ball-burnishing technique. Surf Coatings Technol 206(11/12):2817–2824 40. Stalin JMR, Balaji B, Vinayagam BK (2017) Optimisation of internal roller burnishing process in CNC machining center using response surface methodology. J Brazilian Soc Mech Sci Eng 39(10):4045–4057 41. Salahshoor M, Guo YB (2013) Process mechanics in ball burnishing biomedical magnesium-calcium alloy. Int J Adv Manuf Technol 64(1/4):133–144 42. Buldum BB, Cagan SC (2018) Study of ball burnishing process on the surface roughness and microhardness of AZ91D alloy. Exp Tech 42(2):233–241 43. Silva-álvarez DF, Márquez-Herrera A, Saldaa-Robles A et al (2020) Improving the surface integrity of the CoCrMo alloy by the ball burnishing technique. J Mater Res Technol 9(4):7592–7601 44. Uddin M, Hall C, Santos V et al (2021) Synergistic effect of deep ball burnishing and HA coating on surface integrity, corrosion and immune response of biodegradable AZ31B Mg alloys. Mater Sci Eng C 118:111459. https://doi.org/10.1016/j.msec.2020.111459 45. Salahshoor M, Li C, Liu ZY et al (2018) Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing. J Mech Behav Biomed Mater 78:246–253 46. Jagadeesh GV, Setti SG (2019) An experimental study on the surface finish of ball burnished magnesium (rare earth base) alloy. Mater Today Proc 18:4711–4716 47. Gomez-Gras G, Travieso-Rodriguez JA, Jerez-Mesa R et al (2016) Experimental study of lateral pass width in conventional and vibrations-assisted ball burnishing. Int J Adv Manuf Technol 87(1/4):363–371 48. Egala R, Jagadeesh GV, Setti SG (2021) Experimental investigation and prediction of tribological behavior of unidirectional short castor oil fiber reinforced epoxy composites. Friction 9(2):250–272 49. Travieso-Rodriguez HGRJA, Gomez GG, Jorba PJ et al (2015) Experimental study on the mechanical effects of the vibration-assisted ball- burnishing process. Mater Manuf Process 30(12):1490–1497 |